Preview

Complex Issues of Cardiovascular Diseases

Advanced search

INVESTIGATION OF THE HYDRODYNAMIC PERFORMANCE OF THE MINIMALLY INVASIVE AORTIC VALVE PROSTHESIS

https://doi.org/10.17802/2306-1278-2016-2-39-45

Abstract

Purpose. The article is to demonstrate the possibility of manufacturing a prototype of transcatheter aortic valve prosthesis, followed by evaluation of its hydrodynamic performance under conditions simulating physiological blood flow.

Materials and methods. In this paper we used the model of self-expanding transcatheter valve obtained on the basis of previous studies. The physical model of the prosthesis are made by high-precision laser cutting of tubes SE508 nickel-titanium alloy (Nitinol) with a further shape training under the control of differential scanning calorimeter (DSC). On the support frame were mounted xenopericardial leaflets stabilized with ethylene glycol diglycidyl ether (EGDE). Thus it was produced a working prototype of self-expanding aortic valve prosthesis. Research was performed in the pulse duplicator Vivitro-Systems (Vivitro Labs inc, Canada) while simulating the physiological mode of heart function: cardiac output of 5 L/min, the frequency of 70 beats/min, the average pressure heart rate in the aorta 100 mmHg, systolic contraction relative duration of 35 %.

Results. The prototype of the transcatheter bioprosthesis showed the average value of the transprosthesis pressure gradient 18.01±0.55 mmHg, vs. 19.72±0.16 mmHg – for control (3F Enable, Medtronic Inc, USA) (p=0.37). Also, the prototype demonstrated lower transvalvular flow: the average value 253.62±3.88 ml/s vs. 272.3 1.18 ml/s (control, p=0.29). The regurgitation fraction, calculated as paravalvular and transvalvular leaks for the prototype was 5.08±1.06 %, the amount of leakage was 2.40±0.78 ml, and the closing volume was 1.67±0.15 ml. Similar rates were not significantly different to the control sample: 3.66±0.81 %; 1.28±0.51 ml and 1.57±0.12 ml, respectively (p=0.19; p<0.1; p=0.56).

Conclusion. This work demonstrates the feasibility of manufacturing the prototype of transcatheter aortic valve prosthesis with Nitinol frame, having hydrodynamic performance, comparable to those used in clinical bioprostheses with seamless method of fixation. However, the evaluation of the possibility of clinical application of applied chosen design requires further research in durability, biocompatibility, and its in-depth study in vivo experiments, but the results and evaluation methods used may be useful in creating new transcatheter heart valve bioprosthesis.

About the Authors

E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


K. U. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation

Address: 6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. +7 (3842) 64-45-27



G. V. Savrasov
Bauman Moscow State Technical University. Moscow, Russia
Russian Federation


T. V. Glushkova
Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


References

1. Lefèvre T., Kappetein A. P., Wolner E., Nataf P., Thomas M., Schächinger V. et al. PARTNER EU Investigator Group. One year follow-up of the multi-centre European PARTNER transcatheter heart valve study. Eur. Heart. J. 2011; 32 (2): 148–157. DOI: 10.1093/eurheartj/ehq427.

2. Piazza N., Grube E., Gerckens U., den Heijer P., Linke A., Luha O. et al. Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) corevalve revalving system: results from the multicentre, expanded evaluation registry 1-year following CE mark approval. EuroIntervention. 2008; 4 (2): 242–249.

3. Bosmans J. M., Kefer J., De Bruyne B., Herijgers P., Dubois C., Legrand V. et al. Belgian TAVI Registry Participants. Procedural, 30-day and one year outcome following CoreValve or Edwards transcatheter aortic valve implantation: results of the Belgian national registry. Interact. Cardiovasc. Thorac. Surg. 2011; 12 (5): 762–767. DOI: 10.1510/ icvts.2010.253773.

4. Grube E., Buellesfeld L., Mueller R., Sauren B., Zickmann B., Nair D. et al. Progress and current status of percutaneous aortic valve replacement: results of three device generations of the CoreValve Revalving system. Circ. Cardiovasc. Interv. 2008; 1 (3): 167–175. DOI: 10.1161/CIRCINTERVENTIONS. 108.819839.

5. Weber A., Noureddine H., Englberger L., Dick F., Gahl B., Aymard T. et al. Ten-year comparison of pericardial tissue valves versus mechanical prostheses for aortic valve replacement in patients younger than 60 years of age. J. Thorac. Cardiovasc. Surg. 2012; 144 (5): 1075–1083. DOI: 10.1016/j.jtcvs.2012.01.024.

6. Исаева И. В., Ковалёва Е. Е., Савелов Е. А., Арабаджян И. С., Крюков В. А., Иоселиани Д. Г. Оригинальный минимально инвазивный ретроперитонеальный доступ к подвздошной артерии для транскатетерной имплантации аортального клапана. Международный журнал интервенционной кардиоангиологии. 2015; 40: 14–20. Isaev I. V., Kovalev E. E., Savelov E. A., Arabajyan I. S., Kryukov V. A., Ioseliani D. G. The original minimally invasive retroperitoneal approach to the iliac artery for transcatheter aortic valve implantation. International Journal of interventional cardiology. 2015; 40: 14–20. [In Russ.].

7. Имаев Т. Э., Комлев А. Е., Акчурин Р. С. Транскатетерная имплантация аортального клапана. Состояние проблемы, перспективы в России. Рациональная фармакотерапия в кардиологии. 2015; 1 (11): 53–59. Imaev T. E., Komlev A. E., Akchurin R. S. Transcatheter aortic valve implantation. Status Problems and Prospects in Russia. Rational pharmacotherapy in cardiology. 2015; 1 (11): 53–59. DOI: 10.20996/1819-6446-2015-11-1-53-59. [In Russ.].

8. Овчаренко Е. А., Клышников К. Ю., Глушкова Т. В., Нуштаев Д. В., Кудрявцева Ю. А., Саврасов Г. В. Выбор ксеноперикардиального лоскута для створчатого аппарата транскатетерных биопротезов клапанов сердца. Медицинская техника. 2015; 5: 1–4. Ovcharenko E. A., Klyshnikov K. Yu., Glushkova T. V., Nushtaev D. V., Kudryavtseva Yu. A., Savrasov G. V. The choosing of the xenopericardial patch for transcatheter heart valve. Medical equipment. 2015; 5: 1–4. [In Russ.].

9. Овчаренко Е. А., Клышников К. Ю., Нуштаев Д. В., Саврасов Г. В., Кудрявцева Ю. А., Барбараш Л. С. Исследование геометрии тубулярного створчатого аппарата протеза клапана аорты методом конечных элементов. Биофизика. 2015; 60 (5): 1000–1009. Ovcharenko E. A., Klyshnikov K. Yu., Nushtaev D. V., Savrasov G. V., Kudryavtseva Yu. A., Barbarash L. S. Research of tubular geometry leaflet apparatus of the aortic valve prosthesis via finite element method. Biophysics. 2015; 60 (5): 1000–1009. [In Russ.].

10. Овчаренко Е. А., Клышников К. Ю., Саврасов Г. В., Нуштаев Д. В., Кудрявцева Ю. А. Выбор дизайна каркаса транскатетерного протеза клапана аорты на основе метода конечных элементов. Компьютерные исследования и моделирование. 2015; 7 (4): 909–922. Ovcharenko E. A., Klyshnikov K. Yu., Savrasov G. V., Nushtaev D. V., Kudryavtseva Yu. A. Selecting the design framework of transcatheter aortic valve prosthesis based on the finite element method. Computer studies and modeling. 2015; 7 (4): 909–922. [In Russ.].

11. Kalejs M., von Segesser L. K. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 2009; 8 (2): 182–186. DOI: 10.1510/icvts.2008.194134.

12. Ovcharenko E. A., Klyshnikov K. Yu., Vlad A. R., Sizova I. N., Kokov A. N., Nushtaev D. V., Yuzhalin A. E. et al. Computer-aided design of the human aortic root. Comput. Biol. Med. 2014; 54: 109–115. DOI: 10.1016/j.compbiomed. 2014.08.023. [In Russ.].

13. Овчаренко Е. А., Клышников К. Ю., Журавлева И. Ю. Зависимость гидродинамических показателей биопротеза «3F Enable» от степени деформации каркаса. Клиническая физиология кровообращения. 2014; 2: 41–47. Ovcharenko E. A., Klyshnikov K. Yu., Zhuravleva I. Yu. The dependence of the hydrodynamic performance of the prosthesis «3F Enable» on the degree of deformation of the frame. Clinical Physiology of blood circulation. 2014; 2: 41–47. [In Russ.].

14. Folliguet T. A., Laborde F., Zannis K., Ghorayeb G., Haverich A., Shrestha M. Sutureless perceval aortic valve replacement: results of two European centers. Ann. Thorac. Surg. 2012; 93 (5): 1483–1488. DOI: 10.1016/j.athoracsur. 2012.01.071.

15. Takagi K., Latib A., Al-Lamee R., Mussardo M., Montorfano M., Maisano F. et al. Predictors of moderate-to-severe paravalvular aortic regurgitation immediately after CoreValve implantation and the impact of postdilatation. Catheter Cardiovasc. Interv. 2011; 78 (3): 432–443. DOI: 10.1002/ccd.23003.

16. Arri S. S., Poliacikova P., Hildick-Smith D. Percutaneous paravalvular leak closure for symptomatic aortic regurgitation after CoreValve transcatheter aortic valve implantation. Catheter Cardiovasc. Interv. 2015; 85 (4): 657–664. DOI: 10.1002/ccd.25730.

17. Pibarot P., Garcia D., Dumesnil J. G. Energy loss index in aortic stenosis: from fluid mechanics concept to clinical application. Circulation. 2013; 12; 127 (10): 1101–1104. DOI: 10.1161/CIRCULATIONAHA.113.001130.


Review

For citations:


Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Glushkova T.V., Barbarash L.S. INVESTIGATION OF THE HYDRODYNAMIC PERFORMANCE OF THE MINIMALLY INVASIVE AORTIC VALVE PROSTHESIS. Complex Issues of Cardiovascular Diseases. 2016;(2):39-45. (In Russ.) https://doi.org/10.17802/2306-1278-2016-2-39-45

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)