Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ В ОБЛАСТИ РАЗРАБОТКИ ГЕН-ВЫДЕЛЯЮЩИХ КОРОНАРНЫХ СТЕНТОВ

https://doi.org/10.17802/2306-1278-2016-3-99-107

Полный текст:

Аннотация

В настоящем обзоре систематизированы основные современные разработки и достижения в области ген-выделяющих стентов; обсуждены их преимущества и недостатки как потенциальной альтернативы непокрытым металлическим стентам и стентам, выделяющим лекарства. Рассмотрены основные стратегии оптимизации, необходимые для перевода основанных на применении ген-выделяющих стентов технологий из экспериментальной сферы в клиническую медицину. 

Об авторах

Н. С. Фаттахов
Балтийский федеральный университет имени Иммануила Канта, Калининград
Россия


Д. И. Куликов
Северо-Западный государственный медицинский университет им. И. И. Мечникова, Санкт-Петербург
Россия


Л. С. Литвинова
Балтийский федеральный университет имени Иммануила Канта, Калининград
Россия

Для корреспонденции: Литвинова Лариса Сергеевна Адрес: 236016, Калининград, ул. Боткина, 3 Тел.: 8 (4012) 59-55-95 – доб. 6631 E-mail: larisalitvinova@yandex.ru



Список литературы

1. Лупанов В. П., Самко А. Н., Бакашвили Г. Н. Реальна ли угроза позднего тромбоза стента с лекарственным покрытием? Сравнение стентов с лекарственным покрытием. Фокус на эверолимус. Кардиоваскулярная терапия и профилактика. 2009; 8 (5): 80–91. Lupanov V. P., Samko A. N., Bakashvili G. N. Real′na li ugroza pozdnego tromboza stenta s lekarstvennym pokrytiem? Sravnenie stentov s lekarstvennym pokrytiem. Fokus na jeverolimus. Kardiovaskuljarnaja terapija i profilaktika. 2009; 8 (5): 80–91.

2. Лупанов В. П., Самко А. Н. Профилактика тромботических осложнений при чрескожных коронарных вмешательствах. Кардиоваскулярная терапия и профилактика. 2009; 8 (8): 85–96. Lupanov V. P., Samko A. N. Profilaktika tromboticheskih oslozhnenij pri chreskozhnyh koronarnyh vmeshatel′stvah. Kardiovaskuljarnaja terapija i profilaktika. 2009; 8 (8): 85–96.

3. Гулевский А. К., Абакумова Е. С., Щенявский И. И. Перспективы использования генной терапии в лечении сердечно-сосудистых заболеваний. Biotechnologia Acta. 2012; 5 (3): 18–32. Gulevskij A. K., Abakumova E. S., Shhenjavskij I. I. Perspektivy ispol′zovanija gennoj terapii v lechenii serdechno-sosudistyh zabolevanij. Biotechnologia Acta. 2012; 5 (3): 18–32.

4. Шевченко Е. К., Талицкий К. А., Парфенов Е. В. Перспективы повышения эффективности генной и клеточной терапии сердечно-сосудистых заболеваний: генетически модифицированные клетки. Клеточная трансплантология и тканевая инженерия. 2010; 5 (2): 19–28. Shevchenko E. K., Talickij K. A., Parfenov E. V. Perspektivy povyshenija jeffektivnosti gennoj i kletochnoj terapii serdechno-sosudistyhzabolevanij: geneticheski modificirovannye kletki. Kletochnaja transplantologija i tkanevaja inzhenerija. 2010; 5 (2): 19–2.

5. Yin R.-X., Yang D.-Z., Wu J.-Z. Nanoparticle drugand gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics. 2014; 4: 175–200. DOI:10.7150/ thno.7210.

6. Schwartz R. S. Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am. J. Cardiol. 1998; 81: 14–17. 106

7. Sharif F., Hynes S. O., McCullagh K. J., Ganley S., Greiser U., McHugh P. et al. Gene-eluting stents: nonviral, liposome-based gene delivery of eNOS to the blood vessel wall in vivo results in enhanced endothelialization but does not reduce restenosis in a hypercholesterolemic model. Gene Ther. 2012; 19: 321–328. DOI:10.1038/gt.2011.92.

8. Chang H., Ren K. F., Zhang H., Wang J. L., Wang B. L., Ji J. The (PrS/HGF-pDNA) multilayer films for gene-eluting stent coating: gene-protecting, anticoagulation, antibacterial properties, and in vivo antirestenosis evaluation. J. Biomed. Mater. Res. B. Appl. Biomater. 2015; 103 (2): 430–439. DOI: 10.1002/jbm.b.33224.

9. Kumar Singh R., Chamberlain J. S. Encapsidated adenovirus mini chromosomes allow delivery and expression of a 14KB dystrophin cDNA to muscle cells. Hum. Mol. Genet. 1996; 5: 913–921. DOI:10.1093/hmg/5.7.913.

10. Fishbein I., Forbes S. P., Adamo R. F., Chorny M., Levy R. J., Alferiev I. S. Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers. J. Vis. Exp. 2014; 90: 51653. DOI: 10.3791/51653.

11. Xiao X., Li J., Samulski R. J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated vectors. J. Virol. 1996; 70: 8098–8108.

12. Sharif F., Hynes S. O., McMahon J., Cooney R., Conroy S., Dockery P. et al. Gene-eluting stents: comparison of adenoviral and adeno-associated viral gene delivery to the blood vessel wall in vivo. Hum Gene Ther. 2006; 17 (7): 741–750. DOI: 10.1089/hum.2006.17.741.

13. Bonci D., Cittadini A., Latronico M. V., Borello U., Aycock J. K., Drusco A. et al. ‘Advanced′ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther. 2003; 10 (8): 630–636. DOI: 10.1038/sj.gt.3301886.

14. Wang X., Niu D., Hu C., Li P. Polyethyleneimine-based nanocarriers for gene delivery. Curr. Pharm. Des. 2015; 21 (42): 6140–6156. DOI: 10.2174/1381612821666151027152907.

15. Майлян Д. Э., Афанасьев Ю. И., Гагарина Д. О., Майлян Э. А. Современное состояние проблемы in-stent рестенозов. Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2015. 30 (10): 5–12. Majljan D. Je., Afanas′ev Ju. I., Gagarina D. O., Majljan Je. A. Sovremennoe sostojanie problemy in-stent restenozov. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Serija: Medicina. Farmacija. 2015. 30 (10): 5–12.

16. Винтизенко С. И., Огородова Л. М., Рукин К. Ю., Петрова И. В. Роль генетических факторов в механизмах развития ремоделирования коронарных артерий после имплантирования стентов. Бюллетень сибирской медицины. 2015; 14 (1): 102–109. Vintizenko S. I., Ogorodova L. M., Rukin K. Ju., Petrova I. V. Rol′ geneticheskih faktorov v mehanizmah razvitija remodelirovanija koronarnyh arterij posle implantirovanija stentov. Bjulleten′ sibirskoj mediciny. 2015; 14(1): 102-109.

17. Hers I., Vincent E. E., Tavaré J. M. Akt signalling in health and disease. Cell. Signal. 2011; 23: 1515–1527.

18. Zhou R. H., Lee T. S., Tsou T. C., Rannou F., Li Y. S., Chien S. et al. Stent implantation activates Akt in the vessel wall: role of mechanical stretch in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 2015–2020.

19. Stabile E., Zhou Y. F., Saji M., Castagna M., Shou M., Kinnaird T. D. et al. Akt controls vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S exit. Circ. Res. 2003; 93: 1059–1065.

20. Che H. L., Bae I. H., Lim K. S., Song I. T., Lee H., Muthiah M. et al. Suppression of post-angioplasty restenosis with an Akt1 siRNA-embedded coronary stent in a rabbit model. Biomaterials. 2012; 33: 8548–8556.

21. Fager G., Hansson G. K., Ottosson P., Dahllof B., Bondjers. Human arterial smooth muscle cells in culture. Effects of platelet-derived growth factor and heparin on growth in vitro. Exp. Cell. Res. 1988; 176: 319–335.

22. Grotendorst G. R., Chang T., Seppa H. E., Kleinman H. K., Martin G. R. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J. Cell. Physiol. 1982; 113: 261–266.

23. Kazlauskas A., DiCorleto P. E. Cultured endothelial cells do not respond to a platelet-derived growth-factor-like protein in an autocrine manner. Biochim. Biophys. Acta. 1985; 846: 405–412.

24. Fishbein I., Waltenberger J., Banai S., Rabinovich L., Chorny M., Levitzki A. et al. Local delivery of plateletderived growth factor receptor-specific tyrphostin inhibits neointimal formation in rats. Arterioscler. Thromb. Vasc. Biol. 2000; 20: 667–676.

25. Deguchi J., Namba T., Hamada H., Nakaoka T., Abe J., Sato O. et al. Targeting endogenous platelet-derived growth factor B-chain by adenovirus-mediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury. Gene Ther. 1999; 6: 956–965.

26. Lin Z. H., Fukuda N., Suzuki R., Takagi H., Ikeda Y., Saito S. et al. Adenovirus-encoded hammerhead ribozyme to PDGF A-chain mRNA inhibits neointima formation after arterial injury. J. Vasc. Res. 2004; 41: 305–313.

27. Li Y., Fukuda N., Kunimoto S., Yokoyama S., Hagikura K., Kawano T. et al. Stent-based delivery of antisense oligodeoxynucleotides targeted to the PDGF A-chain decreases in-stent restenosis of the coronary artery. J. Cardiovasc. Pharmacol. 2006; 48: 184–190.

28. Kipshidze N. N., Iversen P., Kim H. S., Yiazdi H., Dangas G., Seaborn R. et al. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Catheter Cardiovasc. Interv. 2004; 61: 518–527.

29. Johnson C., Galis Z. S. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 54–60.

30. Johnson T. W., Wu Y. X., Herdeg C., Baumbach A., Newby A. C., Karsch K. R. et al. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 754–759.

31. Chaabane C., Otsuka F., Virmani R., Bochaton-Piallat M. L. Biological responses in stented arteries. Cardiovasc. Res. 2013; 99: 353–363.

32. Welt F. G., Rogers C. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1769– 1776.

33. Sarkar K., Sharma S. K., Sachdeva R., Romeo F., Garza L., Mehta J. L. Coronary artery restenosis: vascular biology and emerging therapeutic strategies. Expert Rev. Cardiovasc. Ther. 2006; 4: 543–556.

34. Inoue T., Croce K., Morooka T., Sakuma M., Node K., Simon D. I. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC. Cardiovasc. Interv. 2011; 4: 1057–1066.

35. Danenberg H. D., Fishbein I., Gao J., Mönkkönen J., Reich R., Gati I. et al. Macrophage depletion by clodronatecontaining liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation. 2002; 106: 599– 605. 3

36. Egashira K., Nakano K., Ohtani K., Funakoshi K., Zhao G., Ihara Y. et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates instent stenosis in rabbits and monkeys. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 2563–2568.

37. Ohtani K., Egashira K., Nakano K., Zhao G., Funakoshi K., Ihara Y. et al. Stent-based local delivery of nuclear factor-kappaB decoy attenuates in-stent restenosis in hypercholesterolemic rabbits. Circulation. 2006; 114: 2773–2779.

38. Takemoto Y., Kawata H., Soeda T., Imagawa K., Somekawa S., Takeda Y. et al. Human placental ectonucleoside triphosphate diphosphohydrolase gene transfer via gelatin-coated stents prevents in-stent thrombosis. Arterioscler. Thromb. Vasc. Biol. 2009; 29: 857–862.

39. Nong Z., Hoylaerts M., Van Pelt N., Collen D., Janssens S. Nitric oxide inhalation inhibits platelet aggregation and platelet-mediated pulmonary thrombosis in rats. Circ. Res. 1997; 81: 865–869.

40. Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest. 1989; 83: 1774–1777.

41. Groves P. H., Banning A. P., Penny W. J., Newby A. C., Cheadle H. A., Lewis M. J. The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty. Cardiovasc. Res. 1995; 30: 87–96.

42. Sarkar R., Meinberg E. G., Stanley J. C., Gordon D., Webb R. C. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 1996; 78: 225–230.

43. Papapetropoulos A., García-Cardeña G., Madri J. A., Sessa W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 1997; 100: 3131–3139.

44. De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 1995; 96: 60–68.

45. Kong D., Melo L. G., Mangi A. A., Zhang L., LopezIlasaca M., Perrella M. A. et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation. 2004; 109: 1769–1775.

46. Brito L. A., Chandrasekhar S., Little S. R., Amiji M. M. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed. Eng. Online. 2010; 9: 56.

47. Muhs A., Heublein B., Schletter J., Herrmann A., Rüdiger M., Sturm M. et al. Preclinical evaluation of inducible nitric oxide synthase lipoplex gene therapy for inhibition of stent-induced vascular neointimal lesion formation. Hum. Gene Ther. 2003; 14: 375–383.

48. Wang K., Kessler P. D., Zhou Z., Penn M. S., Forudi F., Zhou X. et al. Local adenoviral-mediated inducible nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model. Mol. Ther. 2003; 7: 597–603.

49. Sharif F., Hynes S. O., Cooney R., Howard L., McMahon J., Daly K. et al. Gene-eluting stents: adenovirusmediated delivery of eNOS to the blood vessel wall accelerates re-endothelialization and inhibits restenosis. Mol. Ther. 2008; 16: 1674–1680.

50. Fishbein I., Alferiev I. S., Nyanguile O., Gaster R., Vohs J. M., Wong G. S. et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc. Natl. Acad. Sci. USA. 2006; 103: 159–164.

51. Fishbein I., Alferiev I., Bakay M., Stachelek S. J., Sobolewski P., Lai M. et al. Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries. Circulation. 2008; 117: 2096–2103.

52. Forbes S. P., Alferiev I. S., Chorny M., Adamo R. F., Levy R. J., Fishbein I. Modulation of NO and ROS production by AdiNOS transduced vascular cells through supplementation with L-Arg and BH4: Implications for gene therapy of restenosis. Atherosclerosis. 2013; 230: 23–32.

53. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med. 2008; 5: 338–349.

54. Asahara T., Bauters C., Pastore C., Kearney M., Rossow S., Bunting S. et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation. 1995; 91: 2793–2801.

55. Walter D. H., Cejna M., Diaz-Sandoval L., Willis S., Kirkwood L., Stratford P. W. et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation. 2004; 110: 36–45. DOI: 10.1161/01.CIR.0000133324.38115.0A.

56. Numaguchi Y., Okumura K., Harada M., Naruse K., Yamada M., Osanai H. et al. Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. Cardiovasc. Res. 2004; 61: 177–185.

57. Huh D., Hamilton G. A., Ingber D. E. From 3D cell culture to organs-on-chips. Trends. Cell. Biol. 2011; 21: 745−754.


Для цитирования:


Фаттахов Н.С., Куликов Д.И., Литвинова Л.С. ДОСТИЖЕНИЯ И ПЕРСПЕКТИВЫ В ОБЛАСТИ РАЗРАБОТКИ ГЕН-ВЫДЕЛЯЮЩИХ КОРОНАРНЫХ СТЕНТОВ. Комплексные проблемы сердечно-сосудистых заболеваний. 2016;(3):99-107. https://doi.org/10.17802/2306-1278-2016-3-99-107

For citation:


Fattakhov N.S., Kulikov D.I., Litvinova L.S. ACHIEVEMENTS AND PROSPECTS IN THE FIELD OF GENE-ELUTING CORONARY STENTS. Complex Issues of Cardiovascular Diseases. 2016;(3):99-107. (In Russ.) https://doi.org/10.17802/2306-1278-2016-3-99-107

Просмотров: 205


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)