Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

МОДИФИКАЦИЯ RGD-ПЕПТИДАМИ СОСУДИСТЫХ ГРАФТОВ МАЛОГО ДИАМЕТРА ИЗ ПОЛИКАПРОЛАКТОНА: РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

https://doi.org/10.17802/2306-1278-2017-6-3-13-24

Полный текст:

Аннотация

Резюме. Для придания поверхности полимерных сосудистых графтов функциональной активности использованы RGD-пептиды, являющиеся сайтами связывания с интегриновыми рецепторами клеток.

Цель исследования. Изучить влияние модификации RGD-пептидами сосудистых графтов малого диаметра из поликапролактона на проходимость, скорость и качество эндотелизации внутренней поверхности после имплантации графтов в брюшную часть аорты мелких лабораторных животных.

Материалы и методы. Графты диаметром 2 мм были изготовлены методом электроспиннинга из поликапролактона (PCL графты). Поверхность графтов была модифицирована RGD-пептидами посредством карбодиимидного связывания (PCL-RGD графты). До имплантации исследована морфология поверхности, физико-механические и вязкоэластические свойства PCL и PCL-RGD графтов. PCL (n=16) и PCL-RGD графты (n=16) имплантировали в брюшную аорту крыс на 1, 3, 6, 9 месяцев, с последующим изучением гистологической и иммунофлуоресцентной картины.

Результаты. Морфология поверхности и вязкоэластические свойства PCL и PCL-RGD графтов не имели существенных различий. Проходимость PCL-RGD графтов на всех сроках имплантации была на 50% выше по сравнению с PCL, а частота развития гранулематозного воспаления - в среднем, в 2 раза меньше. Присутствие на внутренней поверхности PCL-RGD графтов эндотелиальных клеток с фенотипом CD31+vWF+ зарегистрировано уже через 1 месяц имплантации, на PCL-графтах - через 3 месяца.

Заключение. Модификация PCL-графтов RGD-пептидами способствовала повышению проходимости графтов, более ранней эндотелизации внутренней поверхности, а также снижению выраженности гранулематозного воспаления. 

Об авторах

В. Г. Матвеева
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Л. В. Антонова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, г. Кемерово, Сосновый бульвар, д. 6


В. В. Севостьянова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Е. А. Великанова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Е. О. Кривкина
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Т. В. Глушкова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Ю. И. Ходыревская
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


О. Л. Барбараш
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Л. С. Барбараш
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Список литературы

1. Kurobe H., Maxfield M.W., Breuer C.K., Shinoka T. Concise review: tissue engineered vascular grafts for cardiac surgery: past, present and future. Stem Cells Trans Med. 2012; 1(7): 566-571

2. Hoenig M.R., Campbell G.R., Campbell J.H. Vascular grafts and the endothelium. Endot. 2006; 13: 385-401

3. Li S., Sengupta D., Chien S. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med. 2014; 6(1): 61-76

4. Матвеева В.Г., Антонова Л.В., Барбараш О.Л., Барбараш Л.С. Пептидные последовательности, имитирующие внеклеточный матрикс, – перспективный способ биофункционализации сердечно-сосудистых имплантатов. Молекулярная медицина, 2016;14(6): 19-26. Matveyeva V.G., Antonova L.V., Barbarash O.L., Barbarash L.S. Peptidnyye posledovatel’nosti, imitiruyushchiye vnekletochnyy matriks – perspektivnyy sposob biofunktsionalizatsii serdechno-sosudistykh implantatov. Molekulyarnaya meditsina, 2016;14(6): 19-26 (In Russ.)

5. Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V. et al. Bioabsorbable bypass grafts biofunctionalised with RGD have enhanced biophysical properties and endothelialisation tested in vivo. Frontiers in Pharmacology. 2016; 7(136): 1-10. Doi: 10.3389/fphar.2016.00136

6. Matveeva V.G., Seifalian A.M., Antonova L.V., Velikanova E.A. et al. Biofunctionalization of polycaprolactone scaffolds with RGD peptides for the better cells integration. AIP Conference Proceedings. 2016; 1760: 020048-1- 020048-5. doi: 10.1063/1.4960267

7. Zhang H., Hollister S. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed. 2009; 20(14): 1975-1993

8. Sedaghati T., Jell G., Seifalian A. Investigation of Schwann cell behaviour on RGDfunctionalised bioabsorbable nanocomposite for peripheral nerve regeneration. N Biotechnol. 2014; 31(3): 203-213

9. Антонова Л. В., Матвеева В. Г., Барбараш Л. С. Использование метода электроспиннинга в создании биодеградируемых сосудистых графтов малого диаметра: Проблемы и решения (обзор). Комплексные проблемы сердечно-сосудистых заболеваний. 2015; 3: 12-22. Antonova L.V., Matveeva V.G., Barbarash L.S. Electrospinning and biodegradable small-diameter vascular grafts: problems and solutions (review). Complex Issues of Cardiovascular Diseases. 2015;(3):12-22. (In Russ.) DOI:10.17802/2306-1278-2015-3-12-22

10. Swartz D.D., Andreadis S.T. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013; 24(5): 916-925

11. Hager G., Holnthoner W., Wolbank S., Husa A.M., et al. Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy. 2013; 15(11): 1426-1435. doi: 10.1016/j.jcyt.2013.06.018

12. Panagiotis Berillis. The Role of Collagen in the Aorta’s Structure. The Open Circulation and Vascular J. 2013; 6: 1-8

13. Антонова Л.В., Насонова М.В., Кудрявцева Ю.А., Головкин А.С. Возможности использования полиоксиалканоатов и поликапролактона в качестве сополимерной основы для создания тканеинженерных конструкций в сердечно-сосудистой хирургии. Бюллетень сибирской медицины. 2012; 1: 128-134. Antonova L.V., Nasonova M.V., Kudryavtseva Y.A., Golovkin A.S. Potential for polyhydroxyalkanoates and policaprolactone copolymer use as tissue-engineered scaffolds in cardiovascular surgery. Bulletin of Siberian Medicine. 2012;11(1):128-134. (In Russ.) DOI:10.20538/1682-0363-2012-1-128-134

14. Струков А.И., Кауфман О.Я. Гранулематозное воспаление и гранулематозные болезни. Москва. Медицина. 1989. 184 с. Strukov A.I., Kaufman., O.YA. Granulematoznoye vospaleniye i granulematoznyye bolezni. Moskva. Meditsina. 1989. 184 s.

15. Stupack D. G. Integrins as a distinct subtype of dependence receptors. Сell Death and Differentiation 2005; 12: 1021–1030. doi:10.1038/sj.cdd.4401658

16. Anderson D.E., Hinds M.T. Extracellular matrix production and regulation in micropatterned endothelial cells. Biochem Biophys Res Commun. 2012; 427(1): 159-164. doi: 10.1016/j.bbrc.2012.09.034

17. Bahramsoltani M., Slosarek I., De Spiegelaere W., Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol. 2014; 43(2): 103-15. doi: 10.1111/ahe.12052

18. Zanetta L., Marcus S.G., Vasile J., Dobryansky M. et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000; 85(2): 281-288


Для цитирования:


Матвеева В.Г., Антонова Л.В., Севостьянова В.В., Великанова Е.А., Кривкина Е.О., Глушкова Т.В., Ходыревская Ю.И., Барбараш О.Л., Барбараш Л.С. МОДИФИКАЦИЯ RGD-ПЕПТИДАМИ СОСУДИСТЫХ ГРАФТОВ МАЛОГО ДИАМЕТРА ИЗ ПОЛИКАПРОЛАКТОНА: РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;(3):13-24. https://doi.org/10.17802/2306-1278-2017-6-3-13-24

For citation:


Matveeva V.G., Antonova L.V., Sevostyanova V.V., Velikanova E.A., Krivkina E.O., Glushkova T.B., Khodyrevskaya Y.I., Barbarash O.L., Barbarash L.S. MODIFICATION BY RGD-PEPTIDES OF VASCULAR GRAFTS OF SMALL DIAMETER FROM POLYPAROLACTONE: EXPERIMENTAL STUDY RESULTS. Complex Issues of Cardiovascular Diseases. 2017;(3):13-24. (In Russ.) https://doi.org/10.17802/2306-1278-2017-6-3-13-24

Просмотров: 134


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)