MODIFICATION BY RGD-PEPTIDES OF VASCULAR GRAFTS OF SMALL DIAMETER FROM POLYPAROLACTONE: EXPERIMENTAL STUDY RESULTS
https://doi.org/10.17802/2306-1278-2017-6-3-13-24
Abstract
Abstract. To endow the luminal surface of the vascular grafts of functional, we applied arginine-glycineaspartic acid (RGD)-containing peptides, which are the ligands for integrins.
The aim to study the effect of modification of small-diameter vascular grafts from polycaprolactone on the patency, speed and quality of endothelization of the internal surface after implantation of grafts into the abdominal part of the aorta of small laboratory animals by the RGD peptides.
Materials and methods.Vascular grafts diameter 2 mm were fabricated of poly(ε-caprolactone) (PCL) using electrospinning following optional conjugation with RGD peptides by the method of carbodiimide binding. The surface morphology, physical-mechanical properties of PCL and PCL-RGD grafts was studied before implantation. Either PCL and PCL-RGD grafts were implanted into abdominal aorta of rats for 1, 3, 6, or 9 months following explantation along with the adjacent aortic regions and further histological and immunofluorescence examination.
Results. We found that immobilization of RGD peptides at the luminal surface did not alter structure and mechanical properties of PCL grafts. Primary patency of the RGD-treated grafts was 50% higher while the prevalence of inflammation was 2-fold lower compared to PCL grafts at all the time points. Moreover, we identified CD31+vWF+ cells at the luminal surface of RGD-PCL grafts as early as 1 month postimplantation in comparison with 3 months postimplantation in PCL grafts.
Conclusion. Immobilization of RGD peptides at the PCL grafts increases the primary grafts patency, induces rapid endothelialization and decreases granulomatous inflammation.
About the Authors
V. G. MatveevaRussian Federation
Kemerovo
L. V. Antonova
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002
V. V. Sevostyanova
Russian Federation
Kemerovo
E. A. Velikanova
Russian Federation
Kemerovo
E. O. Krivkina
Russian Federation
Kemerovo
T. B. Glushkova
Russian Federation
Kemerovo
Yu. I. Khodyrevskaya
Russian Federation
Kemerovo
O. L. Barbarash
Russian Federation
Kemerovo
L. S. Barbarash
Russian Federation
Kemerovo
References
1. Kurobe H., Maxfield M.W., Breuer C.K., Shinoka T. Concise review: tissue engineered vascular grafts for cardiac surgery: past, present and future. Stem Cells Trans Med. 2012; 1(7): 566-571
2. Hoenig M.R., Campbell G.R., Campbell J.H. Vascular grafts and the endothelium. Endot. 2006; 13: 385-401
3. Li S., Sengupta D., Chien S. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med. 2014; 6(1): 61-76
4. Матвеева В.Г., Антонова Л.В., Барбараш О.Л., Барбараш Л.С. Пептидные последовательности, имитирующие внеклеточный матрикс, – перспективный способ биофункционализации сердечно-сосудистых имплантатов. Молекулярная медицина, 2016;14(6): 19-26. Matveyeva V.G., Antonova L.V., Barbarash O.L., Barbarash L.S. Peptidnyye posledovatel’nosti, imitiruyushchiye vnekletochnyy matriks – perspektivnyy sposob biofunktsionalizatsii serdechno-sosudistykh implantatov. Molekulyarnaya meditsina, 2016;14(6): 19-26 (In Russ.)
5. Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V. et al. Bioabsorbable bypass grafts biofunctionalised with RGD have enhanced biophysical properties and endothelialisation tested in vivo. Frontiers in Pharmacology. 2016; 7(136): 1-10. Doi: 10.3389/fphar.2016.00136
6. Matveeva V.G., Seifalian A.M., Antonova L.V., Velikanova E.A. et al. Biofunctionalization of polycaprolactone scaffolds with RGD peptides for the better cells integration. AIP Conference Proceedings. 2016; 1760: 020048-1- 020048-5. doi: 10.1063/1.4960267
7. Zhang H., Hollister S. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed. 2009; 20(14): 1975-1993
8. Sedaghati T., Jell G., Seifalian A. Investigation of Schwann cell behaviour on RGDfunctionalised bioabsorbable nanocomposite for peripheral nerve regeneration. N Biotechnol. 2014; 31(3): 203-213
9. Антонова Л. В., Матвеева В. Г., Барбараш Л. С. Использование метода электроспиннинга в создании биодеградируемых сосудистых графтов малого диаметра: Проблемы и решения (обзор). Комплексные проблемы сердечно-сосудистых заболеваний. 2015; 3: 12-22. Antonova L.V., Matveeva V.G., Barbarash L.S. Electrospinning and biodegradable small-diameter vascular grafts: problems and solutions (review). Complex Issues of Cardiovascular Diseases. 2015;(3):12-22. (In Russ.) DOI:10.17802/2306-1278-2015-3-12-22
10. Swartz D.D., Andreadis S.T. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013; 24(5): 916-925
11. Hager G., Holnthoner W., Wolbank S., Husa A.M., et al. Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy. 2013; 15(11): 1426-1435. doi: 10.1016/j.jcyt.2013.06.018
12. Panagiotis Berillis. The Role of Collagen in the Aorta’s Structure. The Open Circulation and Vascular J. 2013; 6: 1-8
13. Антонова Л.В., Насонова М.В., Кудрявцева Ю.А., Головкин А.С. Возможности использования полиоксиалканоатов и поликапролактона в качестве сополимерной основы для создания тканеинженерных конструкций в сердечно-сосудистой хирургии. Бюллетень сибирской медицины. 2012; 1: 128-134. Antonova L.V., Nasonova M.V., Kudryavtseva Y.A., Golovkin A.S. Potential for polyhydroxyalkanoates and policaprolactone copolymer use as tissue-engineered scaffolds in cardiovascular surgery. Bulletin of Siberian Medicine. 2012;11(1):128-134. (In Russ.) DOI:10.20538/1682-0363-2012-1-128-134
14. Струков А.И., Кауфман О.Я. Гранулематозное воспаление и гранулематозные болезни. Москва. Медицина. 1989. 184 с. Strukov A.I., Kaufman., O.YA. Granulematoznoye vospaleniye i granulematoznyye bolezni. Moskva. Meditsina. 1989. 184 s.
15. Stupack D. G. Integrins as a distinct subtype of dependence receptors. Сell Death and Differentiation 2005; 12: 1021–1030. doi:10.1038/sj.cdd.4401658
16. Anderson D.E., Hinds M.T. Extracellular matrix production and regulation in micropatterned endothelial cells. Biochem Biophys Res Commun. 2012; 427(1): 159-164. doi: 10.1016/j.bbrc.2012.09.034
17. Bahramsoltani M., Slosarek I., De Spiegelaere W., Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol. 2014; 43(2): 103-15. doi: 10.1111/ahe.12052
18. Zanetta L., Marcus S.G., Vasile J., Dobryansky M. et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000; 85(2): 281-288
Review
For citations:
Matveeva V.G., Antonova L.V., Sevostyanova V.V., Velikanova E.A., Krivkina E.O., Glushkova T.B., Khodyrevskaya Yu.I., Barbarash O.L., Barbarash L.S. MODIFICATION BY RGD-PEPTIDES OF VASCULAR GRAFTS OF SMALL DIAMETER FROM POLYPAROLACTONE: EXPERIMENTAL STUDY RESULTS. Complex Issues of Cardiovascular Diseases. 2017;(3):13-24. (In Russ.) https://doi.org/10.17802/2306-1278-2017-6-3-13-24