Preview

Complex Issues of Cardiovascular Diseases

Advanced search

RISK PREDICTION SCORES OF DISEASES

https://doi.org/10.17802/2306-1278-2018-7-1-84-93

Abstract

The wide application of prediction scores requires specific knowledge of their benefits and limitations from physicians. The article discusses the benefits and limitations of the established prediction scores, proposes their new classification as well as the principles of their clinical application. The opportunities and perspectives for developing novel prediction scores using precise mathematic models are highlighted.

About the Author

F. I. Belialov
Irkutsk State Medical Academy of Postgraduate Education, Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuing Professional Education» of the Ministry of Healthcare of the Russian Federation
Russian Federation

Corresponding author: Farid Belialov, address: Russian Federation, 664079, Irkutsk, 100, Microdistrict Yubileiniy



References

1. Belialov F. Prognosis and scores in cardiology. M: MEDpress-inform, 2018. 300 p. ({n Russ).

2. Wick J.P., Turin T.C., Faris P.D., MacRae J.M., Weaver R.G., Tonelli M. et al. A Clinical Risk Prediction Tool for 6-Month Mortality After Dialysis Initiation Among Older Adults. Am J Kidn Dis. 2017; 69(5):568–575.

3. Aspberg S., Chang Y., Atterman A., Bottai M., Bottai M., Go A.S. Singer DE Comparison of the ATRIA, CHADS2, and CHA2DS2-VASc stroke risk scores in predicting ischaemic stroke in a large Swedish cohort of pa-tients with atrial fibrillation. Eur Heart J. 2016;37(42):3203.

4. Zhu Wю, Fu Lю, Ding Yю, Huang L., Xu Z., Hu J., Hong K. Meta-analysis of ATRIA versus CHA2DS2-VASc for predicting stroke and thromboembolism in patients with atrial fibrillation. Int J Card. 2017;227:436–442.

5. van den Ham H.A., Klungel O.H., Singer D.E., Leufkens H.G., van Staa T.P. Comparative Performance of ATRIA, CHADS2, and CHA2DS2-VASc Risk Scores Predicting Stroke in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2015;66(17):1851–1859. doi: 10.1016/j.jacc.2015.08.033.

6. Leong K.M.W., Chow J-J., Ng F.S., Falaschetti E., Qureshi N., Koa-Wing M. Comparison of the Prognostic Usefulness of the ESC and AHA/ACCF Risk Stratification Systems for Patients With Hypertrophic Cardiomyopathy. Am J Card. 2018;121(3):349-355. doi: 10.1016/j.amjcard.2017.10.027.

7. Zhou L., Yang X.B., Guan Y., X. Xing, T. T. Ming, F.H. Fan al. Development nd Validation of a Risk Score for Prediction of Acute Kidney In-jury in Patients With Acute Decompensated Heart Failure: A Prospective Cohort Study in China. J Am Heart Assoc. 2016;5(11).

8. Rücker V, Keil U, Fitzgerald AP, Malzahn U1,4, Prugger C5, Ertl G Pre- dicting 10-Year Risk of Fatal Cardiovascular Disease in Germany: An Update BasedontheSCORE-DeutschlandRiskCharts.PLoSOne.2016;11(9):e0162188.

9. Than M., Flaws D., Sanders S., Doust J., Glasziou P., Kline J., Develop- ment and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol. Emerg Med Australas. 2014; 26(1):34-44.

10. Muntner P., Whelton P.K. Using Predicted Cardiovascular Disease Risk in Conjunction With Blood Pressure to Guide Antihypertensive Medication Treatment. J Am Coll Card. 2017;69(19):2446.

11. Nashef S.A.M., Roques F., Sharples L.D., Nilsson J., Smith C., Goldstone A.R., Lockowandt U. EuroSCORE II. European Journal of Cardio-Thoracic Surgery. 2012;41(4):734–45.

12. Teramoto T., Sasaki J., Ishibashi S., Birou S., Daida H., Dohi S. Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diag- nosis and prevention of atherosclerotic cardiovascular diseases in Japan – 2012 version. J Atheroscler Thromb. 2013;20(6):517–23.

13. Chia YC, Lim HM, Ching SM. Validation of the pooled cohort risk score in an Asian population - a retrospective cohort study. BMC Cardiovasc Disord. 2014;14:163.

14. Koliscak L, Maynor L. Pharmacologic prophylaxis against venous thrombo-embolism in hospitalized patients with cirrhosis and associated coagulopa-thies.Am J Health Syst Pharm. 2012;69:658–63.

15. Goldenberg I, Vyas AK, Hall WJ, et al. Risk stratification for primary im-plantation of a cardioverter-defibrillator in patients with ischemic left ven-tricular dysfunction. J Am Coll Cardiol. 2008;51(3):288–96.

16. Subherwal S., Bach R.G., Chen A.Y., Moss A.J., Wang H., He H. Baseline Risk of Major Bleeding in Non–ST–Segment-Elevation Myocardial In-farction: The CRUSADE Bleeding Score. Circulation 2009;119(14):1873–82.

17. Pisters R., Lane D.A., Nieuwlaat R., de Vos C.B., Crijns H.J., Lip G.Y. A novel user-friendly score (HAS-BLED) to assess one-year risk of major bleeding in atrial fibrillation patients: The Euro Heart Survey. Chest. 2010;138(5):1093–100.

18. Loke Y.K., Kwok C.S., Niruban A., Myint P.K. Value of severity scales in predicting mortality from community-acquired pneumonia: systematic review and meta-analysis. Thorax. 2010;65(10):884–90.

19. Liew S.M., Doust J., Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart. 2011;97(9):689–697.

20. Steinberg B.A., Shrader P., Kim S., Thomas L., Fonarow G.C., Ansell J. How well does physician risk assessment predict stroke and bleeding in atrial fibrillation? Results from the ORBIT-AF. Am Heart J. 2016;181:145-152.

21. Beck A-J.C., Hagemeijer A., Tortolani B., Byrd B.A., Parekh A., Datillo P., Birkhahn R. Comparing an Unstructured Risk Stratification to Pub-lished Guidelines in Acute Coronary Syndromes. Western Journal of Emergency Medicine. 2015;16(5):683-689.

22. Karmali K.N., Persell S.D., Perel P., Lloyd-Jones D.M., Berendsen M.A., Huffman M.D. Risk scoring for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2017, Issue 3.

23. Dyakova M., Shantikumar S., Colquitt J.L., Drew C.M., Sime M., MacIver J. Systematic versus opportunistic risk assessment for the primary preven-tion of cardiovascular disease. Cochrane Database of Systematic Reviews 2016, Issue 1.

24. Flores-Ríos X., Couto-Mallón D., Rodríguez-Garrido J., García-Guimaraes M., Gargallo-Fernández P., Piñón-Esteban P. et al. Comparison of the performance of the CRUSADE, ACUITY-HORIZONS, and ACTION bleeding risk scores in STEMI undergoing primary PCI. Eur Heart J Acute Cardiovasc Care. 2013;2(1):19–26.

25. Ariza-Solé A., Sánchez-Elvira G., Sánchez-Salado J.C., Lorente-Tordera V., Salazar-Mendiguchía J., Sánchez-Prieto R. et al. CRUSADE bleeding risk score validation for ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Thromb Res. 2013;132(6): 652–8.

26. Paoletti Perini A., Bartolini S., Pieragnoli P., Valleggi A., Vergaro G., Mi-chelotti F. et al. CHADS2 and CHA2DS2–VASc scores to predict morbid- ity and mortality in heart failure patients candidates to cardiac resynchro- nization therapy. Europace. 2014;16(1):71–80.

27. Fang W.F., Yang K.Y., Wu C.L., Yu C.J., Chen C.W., Tu C.Y., Lin M.C. Application comparison of scoring indices to predict outcomes in patients with healthcare associated pneumonia. Crit Care. 2011;15(1):R32.

28. Horne B.D., May H.T., Muhlestein J.B., Ronnow B.S., Lappé D.L., Ren- lund D.G., et al. Exceptional mortality prediction by risk scores from common laboratory tests. Am J Med. 2009;122(6):550–8.

29. May H.T., Reiss-Brennan B., Brunisholz K.D., Horne B.D. Clinically Feasi-ble Stratification of 3-Year Chronic Disease Risk in Primary Care: The Men-tal Health Integration Risk Score. Psychosomatics. 2017;58(4):395–405.

30. Belialov F. Has personalized medicine the future?. Klinicheskaya Meditsina. 2014;73–74. (In Russ).

31. Obermeyer Z., Emanuel E.J. Predicting the Future – Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016;375(13):1216–1219.

32. Belialov F. Investigation of unstability factors of angina?. Sibirskij Medicinskij Zhurnal. 2001;1:32–36. (In Russ).

33. Belialov FI, Kuklin SG. Heart rate variability in unstable angina during‘day-to-day’monitoring. Kardiologiia. 2002;42(1):48-51. (In Russ).

34. Belialov FI. Psychosomatic and environmental factors in unstable angina. Defense of a doctorate: 14.00.05. Saint Petersburg. 2002. 222 p. (In Russ).

35. Deo R.C. Machine Learning in Medicine. Circulation. 2015;132(20):1920.

36. Pirracchio R., Petersen M.L., Carone M., Rigon M.R., Chevret S., van der Laan M.J. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. The Lancet Res- piratory Medicine. 3(1):42–52.

37. Churpek M.M., Yuen T.C., Winslow C., Meltzer D.O., Kattan M.W., Edelson D.P. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit Care Med. 2016;44(2):368–74. doi: 10.1097/CCM.0000000000001571.

38. Weng SF, Reps J, Kai J, Garibaldi J.M., Qureshi N. Can machine- learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE. 2017;12(4):e0174944. doi: 10.1371/journal.pone.0174944.


Review

For citations:


Belialov F.I. RISK PREDICTION SCORES OF DISEASES. Complex Issues of Cardiovascular Diseases. 2018;7(1):84-93. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-1-84-93

Views: 964


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)