Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

МЕХАНИЗМЫ РАЗВИТИЯ ДИСФУНКЦИЙ БИОЛОГИЧЕСКИХ ПРОТЕЗОВ КЛАПАНОВ СЕРДЦА

https://doi.org/10.17802/2306-1278-2018-7-2-10-24

Полный текст:

Аннотация

В настоящей работе проведен анализ современных публикаций по механизмам развития дисфункций биологических протезов (БП) клапанов сердца. На основании литературных данных о хорошо известных, а также в настоящее время активно изучаемых причин нарушения работы БП предпринята попытка выделить основные патогенетические направления формирования дисфункции БП. Помимо процесса естественного старения (износа) ткани клапана, развивающегося в ходе непрерывных циклических механических воздействий, и сопровождающегося формированием очагов кальцификации путем пассивного и активного процесса минералообразования, проведен анализ возможного неблагоприятного влияния протез-обусловленных и реципиент-ассоциированных факторов. К протез-обусловленным причинам развития дисфункций были отнесены технологические и технические факторы, неблагоприятное воздействие которых на клапан, возможно на этапе предимплантационной подготовки и непосредственно в ходе имплантации. С позиций реципиент-ассоциированных неблагоприятных условий для долгосрочного функционирования биологического протеза рассмотрены основные дисметаболические, иммунные, гемостазиологические и гиперпролиферативные (гиперпластические) состояния. На основании этого впервые предложена классификация дисфункций БП, основанная на патогенетических механизмах формирования нарушения работы клапана с учетом их морфологических проявлений.

Об авторах

Л. С. Барбараш
Федеральное государственное бюджетное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
доктор медицинских наук, профессор, академик РАН, главный научный сотрудник


Н. В. Рогулина
Федеральное государственное бюджетное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
кандидат медицинских наук, научный сотрудник лаборатории кардиоваскулярного биопротезирования


Н. В. Рутковская
Федеральное государственное бюджетное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
доктор медицинских наук, старший научный сотрудник лаборатории кардиоваскулярного биопротезирования


Е. А. Овчаренко
Федеральное государственное бюджетное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
кандидат технических наук, заведующий лабораторией новых биоматериалов отдела экспериментальной и клинической кардиологии


Список литературы

1. Oakley El.R., Kleine Р., Bach D.S. Choice of Prosthetic Heart Valve in Today’s Practice.Circulation. 2008; 117 (2): 253-256.

2. Hammermeister K., Sethi G.K., Henderson W.G., Grover F.L., Oprian C., Rahimtoola S.H. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. JACC. 2000; 36: 1152–1158.

3. Huygens S.A., Mokhles M.M., Hanif M., Bekkers J.A., Bogers A.J., Rutten-van Mölken M.P., et al. Contemporary outcomes after surgical aortic valve replacement with bioprostheses and allografts: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2016; 50(4):605-616. doi:10.1093/ejcts/ezw101.

4. Edmunds, L. Jr., Clark R.E., Cohn L.H., Grunkemeier G.L., Miller D.C., Weisel R.D. Guidelines for reporting morbidity and mortality after cardiac valvular operations. The American Association for Thoracic Surgery, Ad Hoc Liaison Committee for Standardizing Definitions of Prosthetic Heart Valve Morbidity. Ann Thorac Surg. 1996; 62(3):932-935. doi: https://doi.org/10.1016/S0003-4975(96)00531-0

5. Mohler E. R. Are atherosclerotic processes involved in aortic valve calcification? Lancet.– 2000; 356 (9229): 524-525.

6. Despres J. P. Inflammation and cardiovascular disease: is abdominal obesity the missing link? Int J Obes Relat Metab Disord. 2003; 27 (3): 22-24.

7. Zhang J.F., Wu Y.C., Shen W.F., Kong Y. Impact of prosthesis-patient mismatch on survival after mitral valve replacement: a systematic review. Сhin Med J (Engl). 2013; 126(19): 3762-3766.

8. Arnáiz-García M.E., González-Santos J.M., Bueno-Codoñer M.E., López-Rodríguez J., Dalmau-Sorlí M.J., Arévalo-Abascal A. et al. Perivalvular pannus and valve thrombosis: two concurrent mechanisms of mechanical valve prosthesis dysfunction. Rev Port Cardiol. 2015; 34(2):141.e1-143. doi: 10.1016/j.repc.2014.08.024.

9. Nair V., Law K.B., Li A.Y. et al. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc. Pathol. 2012; 21: 158-168.

10. Coen G. Calcimimetics, parathyroid hormone, and vascular calcification in chronic kidney disease. Kidney Int. 2008;74: 1229-1231.

11. Yamamoto К., YamamotoН., Yoshida К. et al. Prognostic factors for progression of early- and late-stage calcific aortic valve disease in Japanese: the Japanese aortic stenosis study (JASS) retrospective analysis. Hypertens. Res. 2010; 33: 269-274.

12. Понасенко А.В., Кутихин А.Г., Хуторная М.В., Южалин А.Е., Цепокина А.В., Головкин А.С., и др. Генетические предикторы кальцинирующей болезни клапанов сердца. Креативная кардиология. 2016; 10 (2):103-112. doi: 10.15275/kreatkard.2016.02.01.

13. Schoen F.J. Mechanisms of Function and Disease of Natural and Replacement Heart Valves. Annu Rev Pathol Mech Dis. 2012; 7: 161-183.

14. Dangas G.D., Weitz J.I., Giustino G., Makkar R., Mehran R. Prosthetic Heart Valve Thrombosis. JACC. 2016;68: 2675. DOI: 10.1016/j.jacc.2016.09.958 .

15. Pang P.Y., Garwood S., Hashim S.W. Intraoperative Bioprosthetic Valve Dysfunction Causing Severe Mitral Regurgitation. Ann Thorac Surg. 2017;103(4):e317-e319. doi: 10.1016/j.athoracsur.2016.09.019.

16. Иванов В.А., Гавриленко А.В., Мьйо С.Х., Евсеев Е.П., Айдамиров Я.А. Повторные операции на клапанах сердца (обзор литературы). Кардиология и сердечно-сосудистая хирургия. 2015; 2:50. doi: 10.17116/ kardio20158249-53.

17. Goel S., Monga N., Majhi S., Panigrahi B., Sinha, S.K. Intraoperative detection of a stuck bioprosthetic mitral valve leaflet causing severe mitral regurgitation. J Cardiothorac Vasc Anesth. 2011; 25:e44–e45.

18. Pal S.N., Golledge J. Osteo-progenitors in vascular calcification-A circulating cell theory. J of Atherosclerosis and thrombosis. 2011; 18: 551-559.

19. Giachelli C.M. Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofacial Res. 2005; 8: 229-231.

20. Johnson T.R., Tomaszewski J.E., Carpenter J.P. Cellular repopulation of human vein allograft bypass grafts. J Vase Surg. 2000; 31(5): 994-1002.

21. Akatov B. C. Calcification of heart and vascular valve transplants: mechanisms of calcification and its prevention. Saarbrucken: AV Akademikerverlag GmbH. Publ. & Co. KG, 2012.

22. Bailey M., Xiao H., Ogle M., Vyavahare N. Aluminum chloride pretreatment of elastin inhibits elastolysis by matrix metalloproteinases and leads to inhibition of elastin-oriented calcification. Am J Pathol. 2001; 159: 1981-1986.

23. Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005; 79(3):1072-1080.

24. Барбараш Л.С., Борисов В.В. , Рутковская Н.В., Бураго А.Н., Одаренко Ю.Н., Кокорин С.Г. Клинико-морфологическое исследование причин дисфункций эпоксиобработанных ксеноаортальных биопротезов в митральной позиции. Кардиология и сердечно-сосудистая хирургия. 2014; 4: 84-86.

25. Grossman W: Pressure measurement. In Grossman W., Baim D.S. (eds): Cardiac Catheterization, Angiography, and Intervention. 7th ed. Philadelphia, Lea & Febiger. 2006

26. Khan S.S., Chaux A., Blanche C. A 20-year experience with the Hancock porcine xenograft in the elderly. Ann. Thorac. Surg. 1998; 66: 35-39.

27. Rizzoli G., Mirone S., Ius P., Polesel E., Bottio T., Salvador L., et al. Fifteen-year results with the Hancock II valve: a multicenter experience. J Thorac Cardiovasc Surg. 2006; 132(3):602-609.

28. Markl М., Kilner P.J., Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 2011; 13:7.

29. Sengupta P.P., Pedrizzetti G., Kilner Pf.J., Kheradvar A., Ebbers T., Tonti G. Emerging Trends in CV Flow Visualization. JACC. Сardiovascular imaging. 2012; 5 (3): 305-316.

30. Chen J., Peacock J.R., Branch J., Merryman D.W. Biophysical analysis of dystrophic and osteogenic models of valvular calcification. J Biomech Eng. 2015; 137(2):020903. doi: 10.1115/1.4029115.

31. Naidu S., Scherer G.W. Nucleation, growth and evolution of calcium phosphate films on calcite. Journal of Colloid and Interface Science. 2014 (435): 128–137.

32. Sánchez-Navas А., Martín-Algarra F., Sánchez-Román M., Jiménez-López C., Nieto F., Ruiz-BustosA. Crystal Growth of Inorganic and Biomediated Carbonates and Phosphates. Inteсн; 2013. doi: 10.5772/52062.

33. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F.,et al. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. The Journal of Thoracic and Cardiovascular Surgery 2001; 121(3):500-509. doi: 10.1067/mtc.2001.112464.

34. Kim K.M., Herrera G.A., Battarbee H.D. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol 1999; 154(3): 843-852. doi: 10.1016/ S0002-9440(10)65331-X.

35. Grases F., Sohnel O., Zelenkova M. Ultrafine Structure of Human Aortic Valve Calcific Deposits. J Cytol Histol 2014; 5(2): 214. doi.org/10.4172/2157-7099.1000214.

36. Leszczynska А., Murphy J.M. Vascular Calcification: Is it rather a Stem/ Progenitor Cells Driven Рhenomenon? Front. Bioeng. Biotechnol. 2018; 6:1-8. https://doi.org/10.3389/ fbioe.2018.00010.

37. Mohler E.R. 3rd, Gannon F., Reynolds C., Zimmerman R., Keane M.G., Kaplan F.S. Вone Formation and Inflammation in Cardiac Valves. Circulation. 2001; 103(11):1522-1528. https://doi.org/10.1161/01.CIR.103.11.1522

38. Balachandran K., Sucosky P., Jo H., Yoganathan A. P. Elevated Cyclic Stretch Induces Aortic Valve Calcification in a Bone Morphogenic Protein-Dependent Manner. The American Journal of Pathology. 2010; 177(1): 49-57. doi: 10.2353/ ajpath.2010.090631.

39. Helder M.R.K., Stoyles N.J., Tefft B.J., Hennessy R.S., Hennessy R.R.C., Dyer R.. et al. Xenoantigenicity of porcine decellularized valves. J Cardiothorac Surg. 2017; 12(1):56. doi: 10.1186/s13019-017-0621-5.

40. Manji R.A., Zhu L.F., Nijjar N.K., Rayner D.C., Korbutt G.S., Churchill T.A., et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006; 114 (4): 318-327. https://doi.org/10.1161/ CIRCULATIONAHA.105.549311.

41. Mathapati S., Verma R.S., Cherian K.M., Guhathakurta S. Inflammatory responses of tissue-engineered xenografts in a clinical scenario. Int. Card. Vasc. Thorac. Surg. 2011;12: 360-365.

42. Pibarot Ph., Dumesnil J. Prosthetic heart valves: selection of the optimal prosthesis and long-termmanagement. Circulation. 2009; 119(7): 1034-1048. doi: 10.1161/ CIRCULATIONAHA.108.778886.

43. Manji R.A., Menkis A.H., Ekser В., Cooper D.K.C. Porcine bioprosthetic heart valves: The next generation. JACC. 2012; 164(2):177-185. doi: 10.1016/j.ahj.2012.05.011.

44. Manji J.S., Rajotte R.V., Koshal А., Manji R.A. Increased apoptosis in porcine cardiac xenografts perfused with human ABO plasma containing the anti-B antibody. Xenotransplantation. 2004;11: 378-379. doi: 10.1111/j.1399-3089.2004.00140.x.

45. Muratov R., Britikov D., Sachkov A., Akatov V., Soloviev V., Fadeeva I. New approach to reduce allograft tissue immunogenicity. Experimental data. Interactive CardioVascular and Thoracic Surgery. 2010;10 (3): 408-412.

46. Honge J.L., Funder J.A., Pedersen T.B., Кronborg M.B., Hasenkam J. M. Degenerative processes in bioprosthetic mitral valves in juvenile pigs. J Cardiothorac Surg. 2011; 6: 72-76. doi: 10.1186/1749-8090-6-72.

47. Nair V., Law K.B., Li A.Y., Phillips K.R. B., David T.E., Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovascular Pathology .2012;21:158-168.

48. Coen G., Manni M., Mantella D., Pierantozzi A., Balducci A., Condò S. et al. Are PTH serum levels predictive of coronary calcifications in haemodialysis patients? Nephrol Dial. Transplant. 2007; 22: 3262-3267.

49. Naves-Díaz M., Passlick-Deetjen J., Guinsburg A., Marelli C., Fernández-Martín J.L., Rodríguez-Puyol D. et al. Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES Study. Nephrology Dialysis Transplantation. 2011;26:1938-1947.

50. Coen, G. Calcimimetics, parathyroid hormone, and vascular calcification in chronic kidney disease. Kidney Int. 2008;74:1229-1231. doi:10.1038/ki.2008.417.

51. Floege J., Kim J., Ireland E., Chazot C., Drueke T., de Francisco A., et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrology Dialysis Transplantation. 2011; 26: 1948-1955. doi:10.1093/ndt/gfq219.

52. Hamerman, D. Osteoporosis and atherosclerosis: biological linkages and the emergence of dual–purpose therapies. Q. J. Med. 2005; 98: 467-484. doi:10.1093/qjmed/ hci077.

53. Hu P., Xuan Q., Hu B., Lu L., Wang J., Qin Y.H. Fibroblast growth factor-23 helps explain the biphasic cardiovascular effects of vitamin D in chronic kidney disease. Int. J. Biol. Sci. 2012;8: 663-671. doi:10.7150/ijbs.3886.

54. Zitterman A. Vitamin D in preventive medicine: are we ignoring the evidence? Br. J. Nutr. 2003; 89 (5): 552-572. doi:10.1079/BJN2003837.

55. Conway S. Osteoporosis in cystic fibrosis. J. Cystic. Fibr. 2003. 2 (4): 161-162.

56. Vakiti A., Mewawalla P. Malignancy-Related Hypercalcemia. Source Stat Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018.

57. Tachamo N., Donato A., Timilsina B., Nazir S., Lohani S., Dhital R., et al. Hypercalcemia associated with cosmetic injections: A systematic review. European Journal of Endocrinology 2018, 178 (4): 425-430. doi: 10.1530/EJE-17-0938.

58. Freeman R. V., Otto C. M. Spectrum of calcific aortic valve disease, pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111:3316-3326. doi: 10.1161/ CIRCULATIONAHA.104.486738.

59. Briand M., Pibarot P., Després J.P., Voisine P., Dumesnil J.G., Dagenais F., et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation. 2006;114: 1512-1517. doi: 10.1161/ CIRCULATIONAHA.105.000422

60. Rajamannan, N. M., Gersh, B., Bonow, R. O. Calcific aortic stenosis: from bench to the bedside: emerging clinical and cellular concepts. Heart. 2003; 89: 801-805.

61. Côté C., Pibarot P., Després J.P., Mohty D., Cartier A., Arsenault B.J., et al. Association between circulating oxidized low-density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis. Heart. 2008; 94: 1175-1180. doi: 10.1136/hrt.2007.125740.

62. Yamamoto K., Yamamoto H., Yoshida K., Kisanuki A., Hirano Y., Ohte N., et al. Prognostic factors for progression of early- and late-stage calcific aortic valve disease in Japanese: the Japanese aortic stenosis study (JASS) retrospective analysis.Hypertens. Res. 2010; 33: 269-274. doi: 10.1038/hr.2009.225. Epub 2010 Jan 8.

63. Briand M., Lemieux I., Dumesnil J.G., Mathieu P., Cartier A., Després J.P., et al. Мetabolic syndrome negatively influences disease progression and prognosis in aortic stenosis. JACC. 2006; 47: 2229-2236. doi:10.1016/j.jacc.2005.12.073.

64. Mohler E. R. Are atherosclerotic processes involved in aortic valve calcification? Lancet. 2000; 356 (9229): 524-525. doi:10.1016/S0140-6736(00)02572-1.

65. Mahjoub H., Mathieu P., Sénéchal M., Larose E., Dumesnil J., Després J.P., et al.ApoB/ ApoA ratio is associated with increased risk bioprosthetic valve degeneration. JACC. 2013;61:752-761. doi: 10.1016/j.jacc.2012.11.033.

66. Farivar, R. S., Cohn, L. H. Hypercholesterolemia is a risk factor for bioprosthetic valve calcification and explantation. J. Thorac. Cardiovasc. Surg. 2003;126: 969-975. doi:10.1016/ S0022.

67. Nollert G., Miksch J., Kreuzer E., Reichart B. Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J. Thoracic. Cardiovasc. Surg. 2003;126: 965-968. doi:10.1016/S0022.

68. Lorusso R., Gelsomino S., Lucà F., De Cicco G., Billè G., Carella R., et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: results from a propensity score-matched Italian multicenter study. Circulation. 2012;125: 604-614. doi:10.1161/CIR.0b013e31824f1e03.

69. Arsenault B.J., Després J.P., Stroes E.S., Wareham N.J., Kastelein J.J., Khaw K.T., et al. Lipid assessment, metabolic syndrome and coronary heart disease risk. Eur. J. Clin. Invest. 2010;40:1081-1093. doi: 10.1111/j.1365-2362.2010.02357.x.

70. Despres, J. P. Inflammation and cardiovascular disease: is abdominal obesity the missing link? Int. J. Obes. Relat. Metab. Disord. 2003; 27 (3): 22-24. doi: 10.1038/sj.ijo.0802495.

71. Tanaka K., Sata M., Fukuda D., Suematsu Y., Motomura

72. N., Takamoto S., et al.H Age-associated aortic stenosis in apolipoprotein E-deficient mice. JACC. 2005;46 (1):134-141. doi: 10.1016/j.jacc.2005.03.058.

73. Yu Z., Seya K., Daitoku K., Motomura S., Fukuda I., Furukawa K., et al. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J. Pharmacol. Exp. Ther. 2011; 337 (1):16-23. doi: 10.1124/jpet.110.177915.

74. Hess K., Ushmorov A., Fiedler J., Brenner R.E., Wirth T. et al. TNFα promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-κB signaling pathway. Bone. 2009; 45: 367-376. doi: 10.1016/j. bone.2009.04.252.

75. New S. E., Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res.2011;108:1381-1391. doi: 10.1161/ CIRCRESAHA.110.234146.

76. Rabkin-Aikawa E., Farber M., Aikawa M., Schoen F.J. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13: 841-847.

77. Rabkin E., Hoerstrup S.P., Aikawa M., Mayer J.E. Jr., Schoen F.J. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. J. Heart Valve Dis. 2002;11: 308-314.

78. New S. E., Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 2011; 108: 1381-1391. doi: 10.1161/ CIRCRESAHA.110.234146.

79. Helske S., Syväranta S., Lindstedt K.A., Lappalainen J., Oörni K., Mäyränpää M.I.,et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 2006;26: 1791-1798. doi: 10.1161/01.ATV.0000228824.01604.63.

80. Deguchi J.O., Aikawa E., Libby P., Vachon J.R., Inada M., Krane S.M., et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation. 2005; 112: 2708-2715. doi: 10.1161/CIRCULATIONAHA.105.562041.

81. Kim J. MicroRNAs as Critical Regulators of the Endothelial to Mesenchymal Transition in Vascular Biology. BMB Rep. 2018; 51 (2): 65-72.

82. Cooley B.С., Nevado J., Mellad J., Yang D., Hilaire C.S., Negro A., et al. TGF-beta signaling mediates endo thelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 2014; (227): 227ra34. doi: 10.1126/scitranslmed.3006927.

83. MicroRNAs as Critical Regulators of the Endothelial to Mesenchymal Transition in Vascular Biology.Kim J. BMB Rep. 2018 Jan 22. pii: 4082.

84. Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Аcta Biomater. 2016; 43: 3-13. doi: 10.1016/j.actbio.2016.07.003.

85. Tourmousoglou C., Meineri M., Feindel C., Brister S. Repair of aorto-left ventricular and aorto-right ventricular fistulas following prosthetic valve endocarditis. J Card Surg. 2013;28(6):654-9. doi: 10.1111/jocs.12197.

86. Vogkou C.T., Vlachogiannis N.I., Palaiodimos L., Kousoulis A.A. The causative agents in infective endocarditis: a systematic review comprising 33,214 cases. Eur. J. Clin. Microbiol. Infect Dis. 2016;35(8):1227-45. doi: 10.1007/ s10096-016-2660-6.

87. Muñoz P., Kestler M., De Alarcon A., Miro J.M., Bermejo J., Rodríguez-Abella H., et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study.Medicine (Baltimore).2015; 94(43):e1816. doi: 10.1097/MD.0000000000001816.

88. Antinori S., Ferraris L., Orlando G., Tocalli L., Ricaboni D., Corbellino M., et al. Fungal endocarditis observed over an 8-year period and a review of the literature. Mycopathologia. 2014;178(1-2):37-51. doi: 10.1007/s11046-014-9754-4.

89. Stear T.J., Shersher D., Kim G.J., Smego D.R.. Valvular Cytomegalovirus Endocarditis. Ann Thorac Surg. 2016;102(2):e105-7. doi: 10.1016/j.athoracsur.2016.01.074.

90. Habib G., Lancellotti P., Antunes M.J., Bongiorni M.G., Casalta J.P., Del Zotti F., et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Еuropean Heart Journal. 2015; 36(44):3075-3128. doi:10.1093/eurheartj/ehv319.

91. Sun X.L., Zhang J., Wang G.G., Zhuang XF. Clinical characteristics of 22 cases of fungal infective endocarditis. Zhonghua Yi Xue Za Zhi. 2013;93(8):569-73. Chinese.

92. Vaideeswar P. Candidial Endocarditis: A Single-Institute Pathological Analysis. Mycopathologia. 2015;180(1-2):81-7. doi: 10.1007/s11046-015-9876-3.

93. Croccia M.G., Pratali S., Basso C., Scioti G., Della Barbera M., Thiene G., et al. Early calcification of a stentless pericardial bioprosthesis in the elderly. J Thorac Cardiovasc Surg. 2009; 137(5):1273-5. doi: 10.1016/j.jtcvs.2008.03.042.

94. Alvarez J.R., Sierra J., Vega M., Adrio B., Martinez-Comendador J., Gude F., et al. Early calcification of the aortic Mitroflow pericardial bioprosthesis in the elderly. Interact Cardiovasc Thorac Surg. 2009; 9(5):842-846. doi: 10.1510/ icvts.2009.204958.

95. Iyer A., Malik P., Prabha R., Kugathasan G., Kuteyi O., Marney L., et al. Early postoperative bioprosthetic valve calcification. Heart Lung Circ. 2013; 22(10): 873-874. doi: 10.1016/j.hlc.2012.12.016.


Для цитирования:


Барбараш Л.С., Рогулина Н.В., Рутковская Н.В., Овчаренко Е.А. МЕХАНИЗМЫ РАЗВИТИЯ ДИСФУНКЦИЙ БИОЛОГИЧЕСКИХ ПРОТЕЗОВ КЛАПАНОВ СЕРДЦА. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(2):10-24. https://doi.org/10.17802/2306-1278-2018-7-2-10-24

For citation:


Barbarash L.S., Rogulina N.V., Rutkovskaya N.V., Ovcharenko E.A. MECHANISMS UNDERLYING BIOPROSTHETIC HEART VALVE DYSFUNCTIONS. Complex Issues of Cardiovascular Diseases. 2018;7(2):10-24. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-2-10-24

Просмотров: 83


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)