Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

IN SITU VASCULAR TISSUE REMODELING USING BIODEGRADABLE TUBULAR SCAFFOLDS WITH INCORPORATED GROWTH FACTORS AND CHEMOATTRACTANT MOLECULES

https://doi.org/10.17802/2306-1278-2018-7-2-25-36

Полный текст:

Аннотация

Background Currently, the search for the bioactive molecules capable of promoting formation of the vascular tissue is still ongoing. We have previously demonstrated that incorporation of the growth factors and chemoattractant molecules into the biodegradable tubular scaffolds can increase their primary patency upon the implantation into rat abdominal aorta. However, further studies are required to investigate tissue remodeling using functionalized vascular grafts with the same diameter as a replaced native vessel. Aim To investigate the specific aspects of de novo vascular tissue formation and calcification employing rat abdominal aorta interposition model and vascular grafts with 1.5 mm diameter with incorporated vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal cell-derived factor (SDF)-1α. Methods Tubular grafts with a diameter of 1.5 mm were blended of poly(3-hydroxybutyrateco-3-hydroxyvalerate) and poly(ε-caprolactone) (PHBV/PCL). Grafts without growth factors were fabricated using standard electrospinning technique whilst grafts with incorporated growth factors were prepared utilizing emulsion electrospinning. VEGF was incorporated into the inner third, whereas bFGF and SDF-1α were incorporated into the outer two-thirds of the graft. Grafts were implanted into the abdominal aortas of Wistar rats for 1, 3, 6, and 12 months following scanning electron microscopy along with histological and immunofluorescent examination. Results Primary patency of the grafts with VEGF, bFGF, and SDF-1α reached 93% indicative of structural integrity of the vascular tissue. Neither signs of inflammation nor severe calcification was detected. Conclusion As in 2 mm diameter vascular grafts, incorporation of bioactive factors into 1.5 mm diameter grafts increased their long-term primary patency and improved vascular tissue formation in comparison with non-modified grafts.

Об авторах

L. V. Antonova
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, the Head of the Laboratory of Cell Technologies


V. V. Sevostyanova
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, researcher at the Laboratory of Cell Technologies


A. V. Mironov
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
research assistant at the Laboratory of Cell Technologies


E. O. Krivkina
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
research assistant at the Laboratory of Cell Technologies


E. A. Velikanova
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, researcher at the Laboratory of Cell Technologies


V. G. Matveeva
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, senior researcher at the Laboratory of Cell Technologies


T. V. Glushkova
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, researcher at the Laboratory of Novel Biomaterials


Ya. L. Elgudin
Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center
Соединённые Штаты Америки
MD, PhD, Assistant Professor, Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America; Chief, Division of Cardiothoracic Surgery Louis Stokes Cleveland VA Medical Center Cleveland, Ohio


L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Россия
PhD, Professor, Academician of the RAS, chief researcher


Список литературы

1. Tara S., Rocco K.A., Hibino N., Sugiura T., Kurobe H., Breuer C.K. et al. Vessel bioengineering. Circ J. 2014; 78(1): 12–9.

2. Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V., Matveeva V.G., Velikanova E.A. et al. Conjugation with RGD peptides and incorporation of vascular endothelial growth factor are equally efficient for biofunctionalization of tissue-engineered vascular grafts./ International Journal of Molecular Sciences 2016; 17(11): 1920. doi:10.3390/ijms17111920.

3. Sevostyanova V.V., Matveeva V.G., Antonova L.V., Velikanova E.A., Shabaev A.R., Senokosova E.A. et al. Constructing a Blood Vessel on the Porous Scaffold Modified with Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor. AIP Conference Proceedings. 2016; 1783(1): 020204. doi: 10.1063/1.4966498.

4. Antonova L.V., Krivkina E.O., Sevostyanova V.V., Velikanova E.A., Matveeva V.G., Mironov A.V. et al. Efficiency of using bioactive molecules in creation of functional biodegradated vascular grafts of small diameter. Siberian Medical Review. 2017;(6): 85-93. DOI: 10.20333/2500136-2017-6-85-9 (in Russian).

5. Glushkova T.V., Sevostyanova V.V., Antonova L.V., Klyshnikov K.Y., Ovcharenko E.A., Sergeeva E.A. et al. Biomechanical remodeling of biodegradable small-diameter vascular grafts in situ. Russian Journal of Transplantology and Artificial Organs. 2016; 18(2):99-109. (in Russian).

6. Nasonova M.V., Shishkova D.K., Antonova L.V., Sevostyanova V.V., Kudryavtseva Y.A., Barbarash O.L. et al. Subcutaneous Implantation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(ε-caprolactone) Scaffolds Modified with Growth Factors. Sovremennye tehnologii v medicine. 2017; 9(2): С 7-18. (in Russian)

7. Matveeva V.G., Antonova L.V., Sevost’janova V.V., Velikanova E.A., Krivkina E.O., Glushkova T.V. et al. Modification by RGD-peptides оf vascular grafts of small diameter from polyparolactone: experimental study results. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2017. (3): 13-24 (in Russian).

8. Ren X., Feng Y., Guo J., Wang H., Li Q., Yang J. et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015; 44(15): 5680-742.

9. Kurobe H., Maxfield M.W., Tara S., Rocco K.A., Bagi P.S., Yi T. et al. Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One. 2015; 10(4): e0120328.

10. Chong D.S., Lindsey B., Dalby M.J., Gadegaard N., Seifalian A.M., Hamilton G. Luminal surface engineering, ‘micro and nanopatterning’: potential for self endothelialising vascular grafts? Eur J Vasc Endovasc Surg. 2014; 47(5): 566-76.

11. d’Arcy J.L., Prendergast B.D., Chambers J.B., Ray S.G., Bridgewater B. et al. Valvular heart disease: the next cardiac epidemic. Heart 2011; 97(2): 91-93. doi: 10.1136/ hrt.2010.205096.

12. Farzaneh-Far A., Proudfoot D., Shanahan C. Weissberg P.L. Vascular and valvar calcification: recent advances. Heart 2001; 85: 13–17. doi: 10.1136/heart.85.1.13.

13. Schoen F.J., Levy R.J. Calcification of Tissue Heart Valve Substitutes: Progress Toward Understanding and Prevention. Ann Thorac Surg 2005; 79: 1072–80. doi: 10.1016/j. athoracsur.2004.06.033.

14. New S.E., Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol 2013; 33(8): 1753–8. doi.org/10.1161/CIRCRESAHA.110.234146.

15. Goettsch C., Hutcheson J.D., Aikawa E. MicroRNA in cardiovascularcalcification: focus on targets and extracellular vesicle deliverymechanisms. Circ Res 2013; 112(7): 1073–84.

16. Leopold J.A. Vascular calcification: mechanisms of vascular smooth musclecell calcification. Trends Cardiovasc Med. 2015; 25(4): 267-74. doi: 10.1016/j.tcm.2014.10.021.

17. Bujan J., Bellh J.M., Sabater C., Jurado F., Garcia-Honduvilla N., Dominguez B. et al. Modifications induced by atherogenic diet in the capacity of the arterial wall in rats to respond to surgical insult. Atherosclerosis1996; 122(2): 141–52.

18. Bostrom K.I., Rajamannan N.M., Towler D.A. The regulation of valvular andvascular sclerosis by osteogenic morphogens. Circ Res 2011; 109(5): 564–577. doi.org/10.1161/ CIRCRESAHA.110.234278.

19. Tintut Y., Patel J., Parhami F., Demer L.L. Tumor necrosis factor-alpha promotes in vitro calcification ofvascular cells via the cAMP pathway. Circulation 2000; 102(21): 2636–42. doi.org/10.1161/01.CIR.102.21.2636.

20. Cote N., Mahmut A., Bosse Y., Couture C., Pagé S., Trahan S. et al. Inflammation is associated with the remodeling of calcificaortic valve disease. Inflammation 2013; 36(3): 573– 581. doi.org/10.1007/s10753-012-9579-6.

21. Fadini G.P., Rattazzi M., Matsumoto T., Asahara T., Khosla S. Emerging role of circulating calcifying cells in thebone-vascular axis. Circulation 2012; 125(22): 2772–81.doi. org/10.1161/CIRCULATIONAHA.112.090860.

22. Gossl M., Khosla S., Zhang X., Higano N., Jordan K.L., Loeffler D. et al. A. Role of circulating osteogenic progenitor cells in calcific aorticstenosis. J. Am Coll Cardiol 2012; 60(19): 1945–1953. doi.org/10.1016/j.jacc.2012.07.042.

23. Cottignoli V., Cavarretta E., Salvador L., Valfré C., Maras A. Morphological and Chemical Study of Pathological Deposits in Human Aortic and Mitral Valve Stenosis: A Biomineralogical Contribution. Patholog Res Int. 2015; 2015: 342984. doi: 10.1155/2015/342984.

24. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F. et al. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. The Journal of Thoracic and Cardiovascular Surgery 2001; 121(3): 500-509. doi: 10.1067/mtc.2001.112464.

25. Kudrjavceva Ju.A., Nasonova M.V., Akent’eva T.N., Burago A.Ju., Zhuravleva I.Ju. The role of suture material in the calcification of cardiovascular bioprosthesis. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2013; 4: 22-27 (in Russian).


Для цитирования:


Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Y.L., Barbarash L.S. IN SITU VASCULAR TISSUE REMODELING USING BIODEGRADABLE TUBULAR SCAFFOLDS WITH INCORPORATED GROWTH FACTORS AND CHEMOATTRACTANT MOLECULES. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(2):25-36. https://doi.org/10.17802/2306-1278-2018-7-2-25-36

For citation:


Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Y.L., Barbarash L.S. IN SITU VASCULAR TISSUE REMODELING USING BIODEGRADABLE TUBULAR SCAFFOLDS WITH INCORPORATED GROWTH FACTORS AND CHEMOATTRACTANT MOLECULES. Complex Issues of Cardiovascular Diseases. 2018;7(2):25-36. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-2-25-36

Просмотров: 137


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)