Preview

Complex Issues of Cardiovascular Diseases

Advanced search

IN VITRO ACTIVITY OF BIOACTIVE MOLECULES INCORPORATED INTO POLY (3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)/ POLY(ε-CAPROLACTONE) SCAFFOLDS

https://doi.org/10.17802/2306-1278-2018-7-2-89-101

Abstract

Background We fabricated biodegradable, bioactive scaffolds to guide the differentiation of endothelial progenitor cells. Aim To study in vitro activity of the bioactive factors incorporated into the poly (3-hydroxubutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) scaffolds. Methods Nonwoven scaffolds were blended of PHBV and PCL utilizing either separate or combined incorporation of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal cell-derived factor-1α (SDF-1α) by emulsion electrospinning. We further studied adhesion, viability, and proliferation of EA.hy 926 endothelial cells cultured on these scaffolds and evaluated vasculogenesis, cell index, and secretory profile in response to the addition of abovementioned bioactive factors. Results We showed that VEGF, bFGF, and SDF-1α retain their bioactivity upon the incorporation into the PHBV/PCL scaffolds. Scaffolds with all three bioactive factors incorporated demonstrated superior performance in comparison with those containing any of these factors alone. Diffusion of the bioactive factors into the culture medium stimulated the secretion of interleukin-10, and VE-cadherin by endothelial cells that indicated anti-inflammatory response and tight intercellular junctions. We also detected the low level of secreted VEGF-A from the scaffolds with VEGF suggestive of its physiological regulation. Conclusion Bioactive factors retain their bioactivity upon the incorporation into the PHBV/ PCL scaffolds. Combination of VEGF, bFGF, and SDF-1a improves cellular response compared to the incorporation of any of these factors alone.

About the Authors

L. V. Antonova
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
PhD, the Head of the Laboratory of Cell Technologies


V. G. Matveeva
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
PhD, senior researcher at the Laboratory of Cell Technologies


E. A. Velikanova
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
PhD, researcher at the Laboratory of Cell Technologies


M. Y. Khanova
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
research assistant at the Laboratory of Cell Technologies


V. V. Sevostyanova
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
PhD, researcher at the Laboratory of Cell Technologies


A. V. Tsepokina
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
research assistant at the Laboratory of Genomic Medicine


Ya. L. Elgudin
Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center
United States
MD, PhD, Assistant Professor, Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America; Chief, Division of Cardiothoracic Surgery Louis Stokes Cleveland VA Medical Center Cleveland, Ohio


L. S. Barbarash
Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation
PhD, Professor, Academician of the RAS, chief researcher


References

1. Palumbo V.D., Bruno A., Tomasello G., Damiano G., Lo Monte A.I. Bioengineered vascular scaffolds: the state of the art. Int J Artif Organs. 2014; 37(7): 503-12. doi: 10.5301/ ijao.5000343.

2. De Valence S., Tille J., Mugnai D., Mrowczynski W., Gurny R., Möller M. et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012; 33(1): 38-47. doi: 10.1016/j.biomaterials.2011.09.024.

3. Talacua H., Smits A.I., Muylaert D.E., van Rijswijk J.W., Vink A., Verhaar M.C. et al. In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only. Tissue Eng Part A. 2015; 21(19-20): 2583-94. doi: 10.1089/ten.TEA.2015.0066.

4. Yu J., Wang A., Tang Z., Henry J., Li-Ping Lee B., Zhu Y. et al. The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials. 2012; 33(32): 8062-74. doi: 10.1016/j.biomaterials.2012.07.042.

5. Zheng W., Wang Z., Song L., Zhao Q., Zhang J., Li D. et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials. 2012; 33(10): 2880-91. doi: 10.1016/j.biomaterials.2011.12.047.

6. Misteli H., Wolff T., Füglistaler P., Gianni-Barrera R., Gürke L., Heberer M., Banfi A. High-throughput flow cytometry purification of transduced progenitors expressing defined levels of vascular endothelial growth factor induces controlled angiogenesis in vivo. Stem Cells. 2010; 11(28): 611-619. doi: 10.1002/stem.291.

7. Yang X., Liaw L., Prudovsky I., Brooks P.C., Vary C., Oxburg L. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep. 2015; 17: 509. doi: 10.1007/s11883-015-0509-6.

8. Ho T. K., Shiwen X., Abraham D., Tsui J., Baker D. Stromal-cell-derived factor-1 (SDF-1)/CXCL12 as potential target of therapeutic angiogenesis in critical leg ischaemia. Cardiology Research and Practice. 2012; 2012: 143209. doi: 10.1155/2012/143209.

9. Tran J., Magenau A., Rodriguez M., Rentero C., Royo T., Enrich C. et al. Activation of endothelial nitric oxide (eNOS) occurs through different membrane domains in endothelial cells. PLos ONE. 2016; 11(3): e0151556. doi: 10.1371/yournal. pone.0151556.

10. Di Lorenzo A., Lin M.I., Murata T., Landskroner-Eiger S., Schleicher M., Kothiya M. et al. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J. Cell Sci. 2014; 126: 5541-5552. doi: 10.1242/ jcs.153601.

11. Murakami M., Simons M. Fibroblast growth factor regulation of neovascularization. Current Opinion Hematol. 2008; 15: 215-220. DOI: 10.1097/MOH.0b013e3282f97d98.

12. Esser J.S., Rahner S., Deckler M., Bode C., Patterson C., Moser M. Fibroblast growth factor signaling pathway in endothelian cells is activated by BMPER to promote angiogenesis. Arterioscler Thromb Vasc Biol. 2015; 35: 358-367. doi: 10.1161/ATVBAHA.114.304345.

13. Amchislavskii E.I., Sokolov D.I., Sel’kov S.A., Freidlin I.S. Proliferativnaya aktivnost’ endotelial’nykh kletok cheloveka linii Ea. hy 926 i ee modulyatsiya. Tsitologiya 2005; 47 (5): 389-399 (In Russian).

14. Amchislavskii E.I., Sokolov D.I., Sel’kov S.A., Freidlin I.S. Modifikatsiya metoda obrazovaniya kapillyaropodobnykh struktur endotelial’nymi kletkami cheloveka linii Ea. hy 926. Meditsinskaya immunologiya. 2006; 8(2-3): 414 (In Russian).

15. Liu F., Li G., Deng L., Kuang B., Li X. The roles of FGF10 in vasculogenesis and angiogenesis. Biomedical Research. 2017; 28(3): 1329-1332.

16. Sokolov D.I., Lvova T.Yu., Okorokova L.S., Belyakova K.L., Sheveleva A.R., Stepanova O.I. et al. Effect of cytokines on the formation tube-like structures by endothelial cells in the precence of trophoblast cells. Cell Nechnologies in Biologi and Medicine. 2017; 1: 148-158. doi: 10.1007/s10517-017-3756-4.

17. Zheng H., Fu G., Dai T., Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology. 2007; 50(3): 274–280. doi: 10.1097/FJC.0b013e318093ec8f.

18. Neuhaus T., Stier S., Totzke G., Gruenewald E., Fronhoffs S., Sachinidis A., Vetter H., Ko Y.D. Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif. 2003; 36 (2): 75–86.

19. Byvaltsev V.A., Stepanov I.A., Belykh E.G., Yarullina A.I. Molecular aspects of angiogenesis in brain glioblastomas. Problems in oncology. 2017; 63 (1): 19-27.

20. Helmlinger J.M., Li Z., Lathia J.D. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010; 102: 789-795. doi: 10.1038/sj.bjc.6605551

21. Boulanger C.M. Endothelium. Arterioscler Thromb Vasc Biol. 2016; 36: e26-e31. doi: 10.1161/ATVBAHA.116.306940

22. Ngu H., Feng Y., Lu L., Oswald S.J., Longmore G.D., Yin F.C. Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann Biomed Eng. 2010; 38(1): 208–222. doi: 10.1007/s10439-009-9826-7

23. Bazzoni G., Dejana E. Endothelial cell-to-cell junction: molecular organization and role in vascular homeostasis. Physiol Rev. 2004; 84(3): 869-901. doi: 10.1152/physrev.00035.2003.


Review

For citations:


Antonova L.V., Matveeva V.G., Velikanova E.A., Khanova M.Y., Sevostyanova V.V., Tsepokina A.V., Elgudin Ya.L., Barbarash L.S. IN VITRO ACTIVITY OF BIOACTIVE MOLECULES INCORPORATED INTO POLY (3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)/ POLY(ε-CAPROLACTONE) SCAFFOLDS. Complex Issues of Cardiovascular Diseases. 2018;7(2):89-101. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-2-89-101

Views: 722


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)