COMPUTATIONAL BLOOD FLOW SIMULATIONS IN CARDIOLOGY AND CARDIAC SURGERY
https://doi.org/10.17802/2306-1278-2018-7-2-129-136
Abstract
About the Authors
N. A. GeydarovRussian Federation
PhD, Associate Professor at the UNESCO Department of Computational Technologies, Institute of Basic Science
K. S. Gainullova
Russian Federation
a 4-year student
O. S. Drygina
Russian Federation
a 4-year student
References
1. Chandran KB. Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses. Cardiovascular engineering and technology. 2010;1(1):18-38. doi:10.1007/s13239-010-0002-x.
2. Schievano S, Kunzelman K, Nicosia MA, Cochran RP, Einstein DR, Khambadkone S, Bonhoeffer P. Percutaneous mitral valve dilatation: single balloon versus double balloon. A finite element study. J Heart Valve Dis. 2009;18(1):28-34.
3. Yoganathan AP, He Z, Casey Jones S. Fluid mechanics of heart valves. Annu Rev Biomed Eng. 2004;6:331-62. Review.
4. Klyshnikov KU, Ovcharenko EA, Nushtaev DV, Barbarash LS. Fatigue strength of novel heart valve bioprosthesis. Sovremennye tehnologii v medicine. 2017; 9(2): 46-52. doi: 10.1769t/stm2017.9.2.05 (in Russian).
5. Burriesci G, Marincola FC, Zervides C. Design of a novel polymeric heart valve. J Med Eng Technol. 2010;34(1):7-22. doi: 10.3109/03091900903261241.
6. Ovcharenko EA, Klyshnikov KU, Glushkova TV, Burago AJu, Zhuravljova IJu. Nonlinear isotropic material model of human aortic root. Tekhnologii zhivykh sistem. 2014; 6: 43-47 (in Russian).
7. Ovcharenko EA, Klyshnikov KJu, Vlad AR, Sizova IN, Zhuravleva IJu. Anatomical grounds for three dimensional models of the human aortic root. Clinical Physiology of Circulation. 2013; 2: 12-20. (in Russian).
8. Mao W, Caballero A, McKay R, Primiano C, Sun W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. Tang D, ed. PLoS ONE. 2017;12(9):e0184729. doi:10.1371/ journal.pone.0184729.
9. Bonow RO, Carabello BA, Kanu C, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise JS, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Page RL, Riegel B. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2006; 114: 84–231.
10. Vahanian A, Baumgartner H, Bax J, Butchart E, Dion R, Filippatos G, Flachskampf F, Hall R, Iung B, Kasprzak J, Nataf P, Tornos P, Torracca L, Wenink A. Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J. 2007; 28: 230–268.
11. Klyshnikov KJu, Ovcharenko EA, Mal'cev DA, Zhuravleva IJu. Comparison analysis of short-term outcomes following the implantition of xenoaortic and xenopericardial epoxy-treated bioprothesis in the mitral position. Clinical Physiology of Circulation. 2013; 1: 45-51 (in Russian).
12. Zahn R, Gerckens U, Linke A, Sievert H, Kahlert P, Hambrecht R, Sack S, Abdel-Wahab M, Hoffmann E, Schiele R, Schneider S, Senges J; German Transcatheter Aortic Valve Interventions-Registry Investigators. Predictors of one-year mortality after transcatheter aortic valve implantation for severe symptomatic aortic stenosis. Am J Cardiol. 2013;112(2):272-9. doi: 10.1016/j.amjcard.2013.03.024.
13. Ovcharenko EA, Klyshnikov KJu, Savrasov GV, Batranin AV, Ganjukov VI, Kokov AN, Nushtaev DV, Dolgov VJu, Kudrjavceva JuA, Barbarash LS. Predicting the outcomes of transcatheter aortic valve prosthesis implantation based on the finite element analysis and microcomputer tomography data. Sovremennye tehnologii v medicine. 2016; 8(1): 82-92. doi: 10.17691/stm2016.8.1.11 (in Russian).
14. Lichtenstein SV, Cheung A, Ye J, Thompson CR, Carere RG, Pasupati S, Webb JG. Transapical transcatheter aortic valve implantation in humans: initial clinical experience. Circulation. 2006; 8;114(6):591-596.
15. Walther T, Simon P, Dewey T, Wimmer-Greinecker G, Falk V, Kasimir MT, Doss M, Borger MA, Schuler G, Glogar D, Fehske W, Wolner E, Mohr FW, Mack M. Transapical minimally invasive aortic valve implantation: multicenter experience. Circulation. 2007; 116 (suppl): I-240-I-245.
16. Au AD, Greenfield HS. 1975. Computer graphics analysis of stresses in blood flow through a prosthetic heart valve. Comput. Biol. Med. 4:279–91
17. Hung TK, Schuessler GB. 1971. Computational analysis as an aid to the design of heart valves. Chem. Eng. Prog. Symp. Ser. 67:8-17
18. Lei M, van Steenhoven AA, van Campen DH. Experimental and numerical analyses of the steady flow field around an aortic Björk-Shiley standard valve prosthesis. J Biomech. 1992;25(3):213-22.
19. Krafczyk, M., Schulz, M. and Rank, E. Lattice-gas simulations of two-phase flow in porous media. Commun. Numer. Meth. Engng.1998; 14: 709–717. doi: 10.1002/(SICI)1099-0887(199808)14:83.0.CO;2-S
20. Hellmeier F, Nordmeyer S, Yevtushenko P, Bruening J, Berger F, Kuehne T, Goubergrits L, Kelm M. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD. Artif Organs. 2018;42(1):49-57. doi: 10.1111/aor.12955.
21. Charles S Peskin Flow patterns around heart valves: A numerical method Journal of Computational Physics. 1972. 10(2): 252–271. doi: 10.1016/0021-9991(72)90065-4
22. McCracken MF, Peskin CS A vortex method for blood flow through heart valves Journal of Computational Physics. 1980; 35(2): 183–205
23. Peskin S, McQueen D, A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. Journal of Computational Physics. 1989; 81(2): 372–405.
24. Griffith BE, Hornung RD, McQueen DM, Peskin CS. An adaptive, formally second order accurate version of the immersed boundary method, Journal of Computational Physics. 2007; 223(1): 10–49.
25. Griffith BE, Hornung RD, McQueen DM, Peskin CS. Parallel and adaptive simulation of cardiac fluid dynamics, in M. Parashar, S. Chandra and X. Li (eds.), Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications. John Wiley and Sons: 2009. p. 518.
26. Griffith BE, Peskin CS. On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, Journal of Computational Physics. 2005. 208(1): 75-105.
27. Bharadwaj KN, Spitz C, Shekhar A, Yalcin HC, Butcher JT. Computational fluid dynamics of developing avian outflow tract heart valves. Ann Biomed Eng. 2012;40(10):2212-27.
28. Yokoyama Y1, Medart D, Hormes M, Schmitz C, Hamilton K, Kwant PB, Takatani S, Schmitz-Rode T, Steinseifer U. CFD simulation of a novel bileaflet mechanical heart valve prosthesis: an estimation of the Venturi passage formed by the leaflets. Int J Artif Organs. 2006;29(12):1132-9.
29. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech. 2008;41(11):2539-50. doi: 10.1016/j. jbiomech.2008.05.004.
30. De Hart J, Peters GW, Schreurs PJ, Baaijens FP. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech. 2003;36(1):103-12.
31. Dwyer HA, Matthews PB, Azadani A, Jaussaud N, Ge L, Guy TS, Tseng EE. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact Cardiovasc Thorac Surg. 2009;9(2):301-8. doi: 10.1510/icvts.2008.200006.
32. Smuts AN, Blaine DC, Scheffer C, Weich H, Doubell AF, Dellimore KH. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J Mech Behav Biomed Mater. 2011 Jan;4(1):85-98. doi: 10.1016/j. jmbbm.2010.09.009.
33. Quaini A, Canic S, Guidoboni G, et al. A Three-Dimensional Computational Fluid Dynamics Model of Regurgitant Mitral Valve Flow: Validation Against in vitro Standards and 3D Color Doppler Methods. Cardiovascular engineering and technology. 2011;2(2):77-89. doi:10.1007/ s13239-011-0038-6.
34. Yazdani A, Li H, Humphrey JD, Karniadakis GE. A General Shear-Dependent Model for Thrombus Formation. PLoS Comput Biol. 2017 17;13(1):e1005291. doi:10.1371/ journal.pcbi.1005291.
35. Volpert V., Tokarev A., G. Sirakov G., Panasenko E., Schnol A., Butylin Fazly Ataullakhanov. Continuous Mathematical Model of Platelet Thrombus Formation in Blood Flow. J. Numer. Anal. Math. Modelling. 2012; 27(2): 191–212. doi: 10.1515/rnam-2012-0011.
36. Matthews PB, Azadani AN, Jhun CS, Ge L, Guy TS, Guccione JM, Tseng EE. Comparison of porcine pulmonary and aortic root material properties. Ann Thorac Surg. 2010;89(6):1981-8. doi: 10.1016/j.athoracsur.2010.03.002.
37. Quan Y, Haibo M, Xin Y, Xu H. Design of Bioprosthetic Heart Valve with Nonlinear Material Properties. International journal on Advances in Information Sciences and Service Sciences. 2013; 5(5): 118. doi: 997-1004. 10.4156/aiss.
38. Ovcharenko EA, Klyshnikov KU, Vlad AR, Sizova IN, Kokov AN, Nushtaev DV, Yuzhalin AE, Zhuravleva IU. Computer-aided design of the human aortic root. Comput Biol Med. 2014; 54:109-15. doi: 10.1016/j. compbiomed.2014.08.023.
Review
For citations:
Geydarov N.A., Gainullova K.S., Drygina O.S. COMPUTATIONAL BLOOD FLOW SIMULATIONS IN CARDIOLOGY AND CARDIAC SURGERY. Complex Issues of Cardiovascular Diseases. 2018;7(2):129-136. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-2-129-136