Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

Перспективы физической преабилитации в профилактике послеоперационной когнитивной дисфункции у пациентов при коронарном шунтировании

https://doi.org/10.17802/2306-1278-2018-7-4S-66-74

Полный текст:

Аннотация

В статье представлен обзор литературных данных по проблеме профилактики послеоперационной когнитивной дисфункции после коронарного шунтирования. Авторы представили анализ литературных данных о возможности использования физической преабилитации и прежде всего аэробных физических тренировок в профилактике данного вида цереброваскулярных осложнений при выполнении коронарного шунтирования. В статье представлен обзор исследований, посвященных механизмам влияния физических тренировок в целом и на когнитивные функции. Особое внимание уделено обзору исследований по изучению церебропротективных механизмов аэробных физических тренировок на когнитивные функции. Обсуждаются перспективы использования аэробных физических тренировок перед коронарным шунтированием с позиций профилактики послеоперационной когнитивной дисфункции. 

Об авторах

О. А. Трубникова
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

Трубникова Ольга Александровна - доктор медицинских наук, заведующая лабораторией нейрососудистой патологии отдела мультифокального атеросклероза.

650002, Кемерово, Сосновый бульвар 6, тел. +7 (3842) 64-31-53



Е. Г. Моськин
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

Моськин Евгений Геннадьевич - очный аспирант.

Сосновый бульвар, 6, Кемерово, 650002



Н. П. Гарганеева
Федеральное государственное бюджетное образовательное учреждение высшего образования Сибирский государственный медицинский университет
Россия

Гарганеева Наталья Петровна - доктор медицинских наук, профессор кафедры общей врачебной практики и поликлинической терапии.

Московский тракт, 2, Томск, 634050



Ю. А. Аргунова
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

Аргунова Юлия Александровна - кандидат медицинских наук, научный сотрудник лаборатории реабилитации нейрососудистой патологии отдела мультифокального атеросклероза.

Сосновый бульвар, 6, Кемерово, 650002



Список литературы

1. Velazquez E. J., Lee, K. L., Deja M. A., Jain A., Sopko G., Marchenko A., Ali I. S., Pohost G., Gradinac S., Abraham W. T., Yii M., Prabhakaran D., Szwed H., Ferrazzi P., Petrie M. C., O'Connor C. M., Panchavinnin P., She L., Bonow R. O., Rankin G. R., Jones R. H., Rouleau J. L. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011; 364 (17): 1607–1616. doi: 10.1056NEJMoa1100356.

2. Hueb W., Lopes N., Gersh B. J., Soares P. , Machado L.A., Jatene F.B., Oliveira S.A., Ramires J.A. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease . Circulation. 2010; 122 (10): 949–957. doi: 10,1161/CIRCULATIONAHA.106.625475.

3. Archbold R.A., Curzen N.P. Off-pump coronary artery bypass graft surgery: the incidence of postoperative atrial fibrillation. Heart. 2003; 89(10):1134-1137.

4. Patel N., Minhas J.S., Chung E.M. Risk factors associated with cognitive decline after cardiac surgery: A systematic review. Cardiovasc Neurol. 2015; 2015: 370612. doi: 10.1155/2015/370612.

5. van Harten A.E., Scheeren T.W., Absalom A.R., Steinmetz J. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012; 67:280–93. doi: 10 .1111/j.1365-2044.2011.07008.x.

6. Steinmetz J., Rasmussen L.S. Peri-operative cognitive dysfunction and protection. Anaesthesia. 2016; 71(Suppl 1): 58–63. doi: 10.1111/anae.13308.

7. Glumac S., Kardum G. , Karanović N. Prospective cohort evaluation of the cortisol response to cardiac surgery with occurrence of early postoperative cognitive decline. Med Sci Monit. 2018; 24: 977-986. doi: 10.12659/MSM.908251.

8. Pack Q.R., Goel K., Lahr B.D., Greason K.L., Squires R.W., Lopez-Jimenez F., Zhang Z., Thomas R.J. Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: a community-based study. Circulation 2013; 128 (6): 590–7. doi: 10.1161/CIRCULATIONAHA.112.001365.

9. Помешкина С.А., Боровик И.В., Крикунова З.П., Коваленко Т.В., Трубникова О.А., Кондрикова Н.В., Барбараш О.А. Эффективность ранней физической реабилитации пациентов после коронарного шунтирования. Сибирский медицинский журнал (Иркутск). 2012; 3: 37–40.

10. Бокерия Л.А., Аронов Д.М. Российские клинические рекомендации. Коронарное шунтирование больных ишемической болезнью сердца: реабилитация и вторичная профилактика. Cardioсоматика. 2016; 7 (3-4); 5-71.

11. Arthur H.M., Daniels C., McKelvie R., Hirsh J., Rush B. Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery. A randomized, controlled trial. Ann Intern Med. 2000; 133 (4): 253–62.

12. Sawatzky J.A., Kehler D.S., Ready A.E., Lerner N., Boreskie S., Lamont D., Luchik D., Arora R.C., Duhamel T.A. Prehabilitation program for elective coronary artery bypass graft surgery patients: a pilot randomized controlled study. Clin Rehabil. 2014; 28 (7): 648–57. doi: 10.1177/0269215513516475.

13. Herdy A.H., Marcchi P.L., Vila A., Tavares C., Collaço J., Niebauer J., Ribeiro J.P. Pre- and postoperative cardiopulmonary rehabilitation in hospitalized patients undergoing coronary artery bypass surgery: a randomized controlled trial. Am J Phys Med Rehabil. 2008; 87 (9): 714–9. doi: 10.1097/PHM.0b013e3181839152.

14. Stammers A.N., Kehler D.S., Afilalo J., Avery L.J., Bagshaw S.M., Grocott H.P., Légaré J.F., Logsetty S., Metge C., Nguyen T., Rockwood K.0, Sareen J.1, Sawatzky J.A., Tangri N., Giacomantonio N., Hassan A., Duhamel T.A., Arora R.C. Protocol for the PREHAB study-Pre-operative rehabilitation for reduction of hospitalization after coronary bypass and valvular surgery: a randomised controlled trial. BMJ Open. 2015; 5(3):e007250. doi:10.1136/bmjopen-2014-007250.

15. Moe G.W., Ezekowitz J.A., O'Meara E., Howlett J.G, Fremes SE, Al-Hesayen A, et al. The 2013 Canadian Cardiovascular Society Heart Failure Management Guidelines Update: focus on rehabilitation and exercise and surgical coronary revascularization. Can J Cardiol. 2014; 30(3):249– 263. doi: 10.1016/j.cjca.2013.10.010.

16. Vanhees L., Rauch B., Piepoli M., van Buuren F., Takken T., Börjesson M., Bjarnason-Wehrens B., Doherty P., Dugmore D., Halle Mimportance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III). Eur J Prev Cardiol. 2012; 19(6): 1333–1356. doi: 10.1177/2047487312437063.

17. Adamopoulos S., Schmid J.P., Dendale P., Poerschke D., Hansen D., Dritsas A., Kouloubinis A., Alders T., Gkouziouta A., Reyckers I., Vartela V., Plessas N., Doulaptsis C., Saner H., Laoutaris I.D. Combined aerobic/inspiratory muscle training vs. aerobic training in patients with chronic heart failure: The VentHeFT trial: a European prospective multicenter randomized trial. Eur J Heart Fail. 2014; 16(5): 574–582. doi: 10.1002/ejhf.70.

18. Intlekofer K.A., Cotman C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer's disease. Neurobiol Dis. 2013; 57: 47-55. doi: 10,1016/j.nbd.2012.06.011.

19. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., Kim J.S., Heo S., Alves H., White S.M., Wojcicki T.R., Mailey E., Vieira V.J., Martin S.A., Pence B.D., Woods J.A., McAuley E, Kramer A.F. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 2011; 108(7):3017-22: doi:10.1073/pnas.1015950108.

20. Brinke L.F., Bolandzadeh N., Nagamatsu L.S., Hsu C.L., Davis J.C., Miran-Khan K., Liu-Ambrose T. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015; 49(4): 248-54. doi: 10.1136/bjsports-2013-093184.

21. Tamura M., Nemoto K., Kawaguchi A., Kato M., Arai T., Kakuma T., Mizukami K., Matsuda H., Soya H., Asada T. Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against aging. Int. J. Geriatr. Psychiatry. 2015; 30: 686–694. doi: 10,1002/gps.4205.

22. Frederiksen K.S., Larsen C.T., Hasselbalch S.G., Christensen A.N., Høgh P., Wermuth L., Andersen B.B., Siebner H.R., Garde E. A 16-week aerobic exercise intervention does not affect hippocampal volume and cortical thickness in mild to moderate Alzheimer's disease. Front Aging Neurosci. 2018;10:293. doi: 10.3389/fnagi.2018.00293.

23. Heyn P., Abreu B.C., Ottenbacher K.J. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004; 85(10):1694-704.

24. Aarsland D., Sardahaee F.S., Anderssen S., Ballard C. Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment Health. 2010; 14(4):386-95. doi: 10.1080/13607860903586136.

25. Okonkwo O.C., Schultz S.A., Oh J.M., Larson J., Edwards D., Cook D., Koscik R., Gallagher C.L., Dowling N.M., Carlsson C.M., Bendlin B.B., La Rue A., Rowley H.A., Christian B.T., Asthana S., Hermann B.P., Johnson S.C., Sager M.A. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014; 83(19):1753-60. doi: 10.1212/WNL.0000000000000964.

26. Merrill D.A., Siddarth P., Raji C.A., Emerson N.D., Rueda F., Ercoli L.M., Miller K.J., Lavretsky H., Harris L.M., Burggren A.C., Bookheimer S.Y., Barrio J.R., Small G.W. Modifiable risk factors and brain positron emission tomography measures of amyloid and tau in nondemented adults with memory complaints. Am J Geriatr Psychiatry. 2016; 24(9):72937. doi: 10.1016/j.jagp.2016.05.007.

27. Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A., Cholerton B.A., Plymate S.R., Fishel M.A., Watson G.S., Duncan G.E., Mehta P.D., Craft S. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease. J Alzheimers Dis. 2010; 22(2):569-79. doi: 10.3233/JAD-2010-100768.

28. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K., Shimokata H., Washimi Y., Endo H., Kato T. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013; 8(4):e61483. doi: 10.1371/journal.pone.0061483.

29. Hoffmann K., Sobol N.A., Frederiksen K.S., Beyer N., Vogel A., Vestergaard K., Brændgaard H., Gottrup H., Lolk A., Wermuth L., Jacobsen S., Laugesen L.P., Gergelyffy R.G., Høgh P., Bjerregaard E., Andersen B.B., Siersma V., Johannsen P., Cotman C.W., Waldemar G., Hasselbalch S.G. Moderateto-high intensity physical exercise in patients with alzheimer's disease: a randomized controlled trial. J Alzheimers Dis. 2016; 50(2):443-53. doi: 10.3233/JAD-150817.

30. Köbe T., Witte A.V., Schnelle A., Lesemann A., Fabian S., Tesky V.A., Pantel J., Flöel A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage. 2016; 131: 226-38. doi: 10.1016/j.neuroimage.2015.09.050.

31. Ryan S. M., Kelly Á.M. Exercise as a pro-cognitive, proneurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing Res. Rev. 27 77–92. doi: 10.1016/j.arr.2016.03.007.

32. Moore K.M., Girens R.E., Larson S.K., Jones M.R., Restivo J.L., Holtzman D.M., Cirrito J.R., Yuede C.M., Zimmerman S.D., Timson B.F. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease. Neurobiol Dis. 2016; 85: 218-224. doi: 10.1016/j.nbd.2015.11.004.

33. Kang E.B., Cho J.Y. Effect of treadmill exercise on PI3K/ AKT/mTOR, autophagy, and Tau hyperphosphorylation in the cerebral cortex of NSE/htau23 transgenic mice. J Exerc Nutrition Biochem. 2015; 19(3):199–209. doi: 10.5717/jenb.2015.15090806.

34. Gleeson M., Bishop N. C., Stensel D.J., Lindley M. R., Mastana S. S., Nimmo M. A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011; 11: 607–615. doi: 10.1038/nri3041.

35. DiPenta J. M., Johnson J. G., Murphy R. J. Natural killer cells and exercise training in the elderly: a review. Can. J. Appl. Physiol. 2004; 29: 419–443. doi: 10.1139/h04-027.

36. Kohut M.L., Senchina D.S. Reversing age-associated immunosenescence via exercise. Exerc. Immunol. Rev. 2004; 10: 6-41.

37. Cotman C.W., Berchtold N.C., Christie L.A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007; 30(9): 464-72. doi: 10.1016/j.tins.2007.06.011.

38. Ravaglia G., Forti P., Maioli F., Chiappelli M., Montesi F., Tumini E., Mariani E., Licastro F., Patterson C. Blood inflammatory markers and risk of dementia: the conselice study of brain aging. Neurobiol. 2007; 28(12): 1810–1820. doi: 0.1016/j.neurobiolaging.2006.08.012.

39. Kohut M.L., McCann D.A., Russell D.W., Konopka D.N., Cunnick J.E., Franke W.D., Castillo M.C., Reighard A.E., Vanderah E. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006; 20(3): 201-9. doi:10.1016/j.bbi.2005.12.002.

40. Daly R.M., O'Connell S.L., Mundell N.L., Grimes C.A., Dunstan D.W., Nowson C.A. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial. Am J Clin Nutr. 2014; 99(4):899910. doi: 10.3945/ajcn.113.064154.

41. Banks W.A., Kastin A.J., Gutierrez E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett. 1994; 179(1-2):53-6.

42. Baune B.T., Ponath G., Golledge J., Varga G., Arolt V., Rothermundt M., Berger K. Association between IL-8 cytokine and cognitive performance in an elderly general population the MEMO-Study. Neurobiol Aging. 2008; 29 (6):937-44. doi: 10,1016/j.neurobiolaging.2006.12.003.

43. Tan Z. S., Beiser A. S., Vasan R. S., Roubenoff R., Dinarello C. A., Harris T. B., Benjamin E.J., Au R., Kiel D.P., Wolf P.A., Seshadri S. Inflammatory markers and the risk of Alzheimer disease: the Framingham study. Neurology. 2007; 68: 1902–1908. doi: 10.1212/01.wnl.0000263217.36439.da.

44. Bonotis K., Krikki E., Holeva V., Aggouridaki C., Costa V., Baloyannis S. Systemic immune aberrations in Alzheimer’s disease patients. J. Neuroimmunol. 2008; 193: 183–187. doi:10.1016/j.jneuroim.2007.10.020.

45. Michigan A., Johnson T. V., Master V. A. Review of the relationship between C-reactive protein and exercise. Mol. Diagn. Ther. 2011; 15: 265–275 doi: 10.2165/11593400-000000000-00000.

46. Phillips C., Baktir M.A., Srivatsan M., Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci. 2014; 8:170. doi: 10.3389/fncel.2014.00170.

47. Аргунова Ю.А., Трубникова О.А., Мамонтова А.С., Сырова И.Д., Кухарева И.Н., Малева О.В., Барбараш О.Л. Влияние трехнедельного курса аэробных физических тренировок на нейродинамические показатели пациентов, перенесших коронарное шунтирование. Российский кардиологический журнал. 2016; 21 (2): 30-36. doi: 10.15829/1560-4071-2016-2-30-36.

48. Tarumi T., Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem. 2018; 144 (5): 595-608. doi: 10.1111/jnc.

49. Chapman S.B., Aslan S., Spence J.S., Keebler M.W., DeFina L.F., Didehbani N., Perez A.M. , Lu H., D'Esposito M. Distinct brain and behavioral benefits from cognitive vs. physical training: A randomized trial in aging adults. Front Hum Neurosci. 2016; 10:338. doi:10.3389/fnhum.2016.00338.

50. Siepe M., Pfeiffer T., Gieringer A., Zemann S., Benk С., Schlensak С., Beyersdorf F. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardiothor. Surg. 2011; 40 (1): 200–207. doi: 10.1016/j.ejcts.2010.11.024.

51. Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast. 2017; 2017: doi: 10.1155/2017/72601307260130.

52. Dinoff A, Herrmann N, Swardfager W., Gallagher D., Lanctôt K.L. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS One. 2016; 11(9):e0163037. doi:10.1371/journal.pone.0163037.

53. Matura S., Fleckenstein J., Deichmann R., Engeroff T., Füzéki E., Hattingen E., Hellweg R., Lienerth B., Pilatus U., Schwarz S., Tesky V.A., Vogt L., Banzer W., Pantel J. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial. Transl Psychiatry. 2017; 7(7):e1172. doi:10.1038/tp.2017.135

54. Phillips C. Physical activity modulates common neuroplasticity substrates in depressive and bipolar disorder. Neural Plasticity. 2017; 2017: 37. doi: 10.1155/2017/7014146.7014146

55. Gavin T.P., Kraus R.M., Carrithers J.A., Garry J.P., Hickner R.C. Aging and the skeletal muscle angiogenic response to exercise in women. J Gerontol A Biol Sci Med Sci. 2014; 70(10):1189-97. doi: 10.1093/gerona/glu138.


Для цитирования:


Трубникова О.А., Моськин Е.Г., Гарганеева Н.П., Аргунова Ю.А. Перспективы физической преабилитации в профилактике послеоперационной когнитивной дисфункции у пациентов при коронарном шунтировании. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(4S):66-74. https://doi.org/10.17802/2306-1278-2018-7-4S-66-74

For citation:


Trubnikova O.A., Moskin E.G., Garganeeva N.P., Argunova Y.A. Prospects of physical prehabilitation for prevention of postoperative cognitive dysfunction in patients undergoing coronary artery bypass grafting. Complex Issues of Cardiovascular Diseases. 2018;7(4S):66-74. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-4S-66-74

Просмотров: 182


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)