Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

МОРФОФУНКЦИОНАЛЬНАЯ СИСТЕМА «КОНДУИТ-АРТЕРИЯ»

https://doi.org/10.17802/2306-1278-2019-8-1-112-122

Полный текст:

Аннотация

В обзорной статье изложено современное представление о реваскуляризации миокарда как венозными, так и артериальными кондуитами с позиции их морфологии и функций. Впервые предложен новый подход, рассматривающий кондуит и целевую коронарную артерию как единое целое в их тесной взаимосвязи, как морфофункциональную систему. Исходя из разрозненных многочисленных данных, с очевидностью можно говорить, что такая система имеет право на существование, так как в ней реализуется обоюдная связь: с одной стороны, кондуит влияет на коронарную артерию, защищая её в некоторой степени от атеросклероза, с другой – сама коронарная артерия способна вызывать изменения в выбранном кондуите. Указанная гипотетическая система позволяет по-новому посмотреть на проблему выбора кондуита в процессе аортокоронарного шунтирования.

Об авторе

А. В. Фролов
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат медицинских наук, старший научный сотрудник лаборатории реконструктивной хирургии мультифокального атеросклероза, врач сердечно-сосудистый хирург, старший преподаватель научно-образовательного отдела,

Сосновый бульвар, 6, Кемерово, 650002



Список литературы

1. Vanhoutte P. M., Shimokawa H., Feletou M., Tang E. H. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol 2017 Jan; 219(1): 22-96. doi: 10.1111/apha.12646

2. Mudrovcic Neja, Arefin Samsul, Craenenbroeck Amaryllis HVan, Kublickiene Karolina. Endothelial maintenance in health and disease: importance of sex differences. Pharmacological Research. doi.org/10.1016/j.phrs.2017.01.011

3. Chen J.Y., Ye Z.X., Wang X.F., Chang J., Yang M.W., Zhong H.H., Hong F.F., Yang S.L. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomedicine & Pharmacotherapy 97 (2018) 423–428. doi.org/10.1016/j.biopha.2017.10.122

4. Eelen G., de Zeeuw P., Treps L., Harjes U., Wong B.W., Carmeliet P. Endothelium cell metabolism Physiol Rev 98: 3–58, 2018 Published November 22, 2017; doi:10.1152/physrev.00001.2017

5. Werner G.S., Wiegand V., Kreuzer H. Effect of acetylcholine on arterial and venous grafts and coronary arteries in patients with coronary artery disease. Eur Heart J. 1990 Feb; 11(2): 127-37.

6. Nishioka H., Kitamura S., Kameda Y., Taniguchi S., Kawata T., Mizuguchi K. Difference in acetylcholine-induced nitric oxide release of arterial and venous grafts in patients after coronary bypass operations. J Thorac Cardiovasc Surg. 1998 Sep; 116(3): 454-9.

7. Prasad A., Zalos G., Mincemoyer R., Schenke W.H., Quyyumi A.A. Nitric oxide activity in arterial and venous bypass grafts [Abstract]. In: Proceedings of the 47th Annual Scientific Session (1191–10), American College of Cardiology 1998.

8. Tarr F.I., Sasvári M., Tarr M., Rácz R. Evidence of nitric oxide produced by the internal mammary artery graft in venous drainage of the recipient coronary artery. Ann Thorac Surg. 2005 Nov; 80(5): 1728-31.

9. Endlich P.W., Aires R.D., Gonçalves R.L., Costa E.D., de Paula Arantes Ângelo J., Alves L.F., da Silva R.F., Rezende B.A., Cortes S.F., Lemos V.S Neuronal nitric oxide synthase-derived hydrogen peroxide effect in grafts used in human coronary bypass surgery. Clin Sci (Lond). 2017 May 1; 131(10): 1015-1026. doi: 10.1042/CS20160642

10. Kitamura S. Physiological and metabolic effects of grafts in coronary artery bypass surgery. Circ J. 2011;75(4):766- 72. Epub 2011 Mar 10.

11. Dimitrova K.R., Hoffman D.M., Geller C.M., Dincheva G., Ko W., Tranbaugh R.F. Arterial grafts protect the native coronary vessels from atherosclerotic disease progression. Ann Thorac Surg. 2012 Aug;94(2): 475-81. Epub 2012 Jun 22. doi: 10.1016/j.athoracsur.2012.04.035

12. Dósa E., Rugonfalvi-Kiss S., Prohászka Z., Szabó A., Karádi I., Selmeci L., Romics L., Füst G., Acsády G. and Entz L. Marked decrease in the levels of two inflammatory markers, hsC-reactive protein and fibrinogen in patients with severe carotid atherosclerosis after eversion carotid endarterectomy. Inflamm. res. 53 (2004) 631–635. DOI 10.1007/s00011-004-1304-y

13. Sajja L.R., Mannam G. Internal thoracic artery: anatomical and biological characteristics revisited. Asian Cardiovasc Thorac Ann. 2015 Jan; 23(1): 88-99. doi: 10.1177/0218492314523629

14. Guo-Wei He. Arterial grafts: clinical classification and pharmacological management. Ann Cardiothorac Surg 2013; 2(4): 507-518. doi: 10.3978/j.issn.2225-319X.2013.07.12

15. Guo–Wei He. Arterial grafting for coronary artery bypass surgery. Second edition. Springer–Verlag Berlin Heidelberg 2006. 356 p.

16. Gaudino M., Antoniades C., Benedetto U., Deb S., Di Franco A. Mechanisms, Consequences, and Prevention of Coronary Graft Failure. Circulation. 2017; 136: 1749–1764. DOI: 10.1161/CIRCULATIONAHA.117.027597

17. Ward A.O., Caputo M., Angelini G.D., George S.J., Zakkar M. Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis. 2017 Oct; 265: 266-274. doi: 10.1016/j.atherosclerosis.2017.08.023

18. Hwang H.Y., Koo B.K., Yeom S.Y., Kim T.K., Kim K.B. Endothelial Shear Stress of the Saphenous Vein Composite Graft Based on the Internal Thoracic Artery. Ann Thorac Surg. 2018 Feb;105(2):564-571. doi: 10.1016/j.athoracsur.2017.08.025

19. Генкель В. В., Салашенко А. О., Алексеева О. А., Шапошник И. И. Эндотелиальная скорость сдвига и сосудистая жесткость на локальном и регионарном уровнях у пациентов на разных стадиях атерогенеза. Регионарное кровообращение и микроциркуляция. 2016; 3(59): 50-56.

20. Yahagi K., Kolodgie F.D., Otsuka F., Finn A.V., Davis H.R., Joner M., Virmani R. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016 Feb; 13(2): 79-98. doi: 10.1038/nrcardio.2015.164

21. Liang M., Wang Y., Liang A., Mitch W. E., RoyChaudhury P., Han G., Cheng J. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int. 2015 Sep; 88(3): 490–502. doi: 10.1038/ki.2015.73

22. Martínez-González B., Reyes-Hernández C.G., Quiroga-Garza A1, Rodríguez-Rodríguez VE1, EsparzaHernández CN1, Elizondo-Omaña R.E., Guzmán-López S. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies. Ann Thorac Cardiovasc Surg. 2017; 23: 55–65. doi: 10.5761/atcs.ra.16-00178

23. Chen H., Kassab G.S. Microstructure-Based Biomechanics of Coronary Arteries in Health and Disease. Biomech. 2016 Augst 16; 49(12): 2548–2559. doi: 10.1016/j.jbiomech.2016.03.023

24. Афанасьев Ю. И., Юрина Н. А., Котовский Е. Ф. и др. Гистология: учебник. 5-е изд. под ред. Ю. И. Афанасьева, Н. А. Юриной. М.: Медицина; 2002. 744 с.

25. Patel V.B., Shah S., Verma S., Oudit G.Y. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017 Nov; 22(6): 889-902. doi: 10.1007/s10741-017-9644-1

26. Schäfer K., Drosos I., Konstantinides S. Perivascular adipose tissue: epiphenomenon or local risk factor? Int J Obes (Lond). 2017 Sep; 41(9):1311-1323. doi: 10.1038/ijo.2017.121

27. Goodwill A.G., Dick G.M., Kiel A.M., Tune J.D. Regulation of Coronary Blood Flow. Compr Physiol. 2017 Mar 16;7(2): 321-382. doi: 10.1002/cphy.c160016

28. Unlü Y., Keleş P., Keleş S., Yeşilyurt H., Koçak H., Diyarbakirli S. An Evaluation of Histomorphometric Properties of Coronary Arteries, Saphenous Vein, and Various Arterial Conduits for Coronary Artery Bypass Grafting. Surg Today. 2003; 33:725–730. DOI: 10.1007/s00595-003-2586-3

29. Martínez-González,B., Theriot-Girón M. C., López-Serna N, Morales-Avalos R., Quiroga-Garza A., Reyes-Hernández C. G. Morphological Analysis of Major Segments of Coronary Artery Occlusion. Importance in Myocardial Revascularization Surgery. Int. J. Morphol. 2015; 33(4): 1205-1212.

30. Fonseca D.A., Antunes P.E., Cotrim M.D. Ultrastructural and histomorphologic properties of the internal thoracic artery: implications for coronary revascularizationCotrim. Coron Artery Dis. 2017 Sep;28(6):518-527. doi: 10.1097/MCA.0000000000000527

31. Carrel T., Winkler B. Current trends in selection of conduits for coronary artery bypass grafting. Gen Thorac Cardiovasc Surg. 2017 Oct; 65(10): 549–556. doi: 10.1007/s11748-017-0807-8

32. Nakajima T., Tachibana K., Takagi N., Ito T., Kawaharada N. Histomorphologic superiority of internal thoracic arteries over right gastroepiploic arteries for coronary bypass. J Thorac Cardiovasc Surg 2016; 151:1704-1708. doi: 10.1016/j.jtcvs.2016.02.018

33. Ruengsakulrach P., Sinclair R., Komeda M., Raman J., Gordon I., Buxton B. Comparative histopathology of radial artery versus internal thoracic artery and risk factors for development of intimal hyperplasia and atherosclerosis. Circulation 1999; 100 (19 Suppl ): II139–II144.

34. Dashwood M.R., Dooley A., Shi-Wen X., Abraham D.J., Dreifaldt M., Souza D.S. Perivascular fat-derived leptin: a potential role in improved vein graft performance in coronary artery bypass surgery. Interact Cardiovasc Thorac Surg. 2011 Feb;12(2):170-3. doi: 10.1510/icvts.2010.247874

35. Stenmark K.R., Yeager M.E., El Kasmi K.C., Nozik-Grayck E., Gerasimovskaya E.V., et al. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013; 75: 23–47. doi: 10.1146/annurev-physiol-030212-183802

36. Dashwood M.R., Tsui J.C. 'No-touch' saphenous vein harvesting improves graft performance in patients undergoing coronary artery bypass surgery: a journey from bedside to bench. Vascul Pharmacol. 2013 Mar; 58(3): 240-50. doi: 10.1016/j.vph.2012.07.008

37. Wadey K., Lopes J., Bendeck M., George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res. 2018; 114(4):601-610. doi: 10.1093/cvr/cvy021.

38. Prandi F., Piola M., Soncini M., Colussi C., D’Alessandra Y., Penza E., et al. Adventitial Vessel Growth and Progenitor Cells Activation in an Ex Vivo Culture System Mimicking Human Saphenous Vein Wall Strain after Coronary Artery Bypass Grafting. PLoS ONE. 2015; 10(2): e0117409. doi: 10.1371/journal.pone.0117409

39. Margreet R. de Vries and Paul H. A. Quax. Inflammation in Vein Graft Disease Front. Cardiovasc. Med. 2018. 5:3. doi: 10.3389/fcvm.2018.00003

40. Batchu S.N., Xia J., Ko K.A., Doyley M.M., Abe J., Morrell C.N., Korshunov V.A. Axl modulates immune activation of smooth muscle cells in vein graftremodeling. Am J Physiol Heart CircPhysiol 2015.309: H1048–H1058. doi: 10.1152/ajpheart.00495.2015

41. Busch A., Hartmann E., Wagner N., Ergün S., Kickuth R., Kellersmann R., Lorenz U. Neointimal hyperplasia in allogeneic and autologous venous grafts is not different in nature. Histochem Cell Biol (2015). 144:59–66. doi: 10.1007/s00418-015-1317-3

42. van den Hoogen P., Huibers M.M., Sluijter J.P., de Weger R.A. Cardiac Allograft Vasculopathy: A Donor or Recipient Induced Pathology? J Cardiovasc Transl Res. 2015; 8:106–116. DOI 10.1007/s12265-015-9612-x

43. Мазуров В.И., Столов С.В., Беляева И.Б., Трофимов Е.А. Участие иммуновоспалительных механизмов в патогенезе коронарного атеросклероза. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2015; 7(4): 13-23.

44. Witztum J.L., Lichtman A.H. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis. Annu Rev Pathol. 2014; 9: 73–102. doi:10.1146/annurev-pathol-020712-163936

45. Aitsebaomo J., Portbury A.L., Schisler J.C., Patterson C. Brothers and Sisters: Molecular insights into arterial-venous heterogeneity. Circ Res. 2008 October 24; 103(9): 929–939. doi:10.1161/CIRCRESAHA.108.184937

46. Shah A.A., Haynes C., Craig D.M., Sebek J., Grass E., Abramson K., Hauser E., Gregory S.G., Kraus W.E., Smith P.K., Shah S.H. Genetic variants associated with vein graft stenosis after coronary artery bypass grafting. Heart Surg Forum. 2015 Feb 27;18(1): E1-5. doi: 10.1532/hsf.1214

47. Tousoulis D. Genetics of coronary artery disease: fact or fiction? Hellenic J Cardiol. 2017; 58 (6): 393-395. doi: 10.1016/j.hjc.2017.12.015

48. Mc Pherson R., Tybjaerg-Hansen A. Genetics of Coronary Artery Disease. Circ Res. 2016 Feb 19;118(4):564- 78. doi: 10.1161/CIRCRESAHA.115.306566.

49. Duan L., Liu C., Hu J., Liu Y., Wang J., Chen G., Li Z., Chen H. Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med. 018 Jul;28(5):311-319. doi: 10.1016/j.tcm.2017.12.012.

50. Huang K., Bao H., Yan Z.Q., Wang L., Zhang P., Yao Q.P., Shi Q., Chen X.H., Wang K.X., Shen B.R., Qi Y.X., Jiang Z.L. MicroRNA-33 protects against neointimal hyperplasia induced by arterialmechanical stretch in the grafted vein. Cardiovasc Res. 2017 Apr 1;113(5):488-497. doi: 10.1093/cvr/cvw257

51. Nazarenko M.S., Markov A.V., Lebedev I.N., Freidin M.B., Sleptcov A.A., Koroleva I.A., Frolov A.V., Popov V.A., Barbarash O.L., Puzyrev V.P.. A Comparison of Genome-Wide DNA Methylation Patterns between Different Vascular Tissues from Patients with Coronary Heart Disease. PLoS ONE. 2015; 10(4): e0122601. doi: 10.1371/journal.pone.0122601

52. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017 Oct 11; 550(7675): 204– 213. doi: 10.1038/nature24277

53. Long Q., Argmann C., Houten S.M., Huang T., Peng S., Zhao Y. et al. Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med. 2016 Feb 9;8(1):15. doi: 10.1186/s13073-016-0268-1.


Для цитирования:


Фролов А.В. МОРФОФУНКЦИОНАЛЬНАЯ СИСТЕМА «КОНДУИТ-АРТЕРИЯ». Комплексные проблемы сердечно-сосудистых заболеваний. 2019;8(1):112-122. https://doi.org/10.17802/2306-1278-2019-8-1-112-122

For citation:


Frolov A.V. MORPHOLOGICAL AND FUNCTIONAL SYSTEM OF GRAFT-ARTERY JUNCTIONS. Complex Issues of Cardiovascular Diseases. 2019;8(1):112-122. (In Russ.) https://doi.org/10.17802/2306-1278-2019-8-1-112-122

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)