VASCULAR PATCHES FOR ARTERIAL RECONSTRUCTION, CHALLENGES AND ADVANCED TECHNOLOGIES
https://doi.org/10.17802/2306-1278-2019-8-3-116-129
Abstract
High prevalence of internal carotid atherosclerosis and recent advances in its diagnosis result in an increase in the annual number of carotid endarterectomy procedures to restore carotid patency. Various randomized prospective studies as well as meta-analyses show a decrease in the number of perioperative and postoperative complications following carotid endarterectomy using patches compared with primary arterial closure. Despite the fact that the autologous vein is the material of choice for carotid patch angioplasty, xenogenic and synthetic patches are also widely used in the clinical practice. Furthermore, tissue engineering technologies and the development of novel biomaterials have recently emerged and may encourage manufacturing of vascular patches capable to promote a regenerative potential of the body and restore vascular wall tissues.
About the Authors
V. V. SevostyanovaRussian Federation
Sevostyanova Viktoria V., PhD, researcher at the Laboratory of Cell Technologies
6, Sosnoviy Blvd, Kemerovo, 650002
A. V. Mironov
Russian Federation
Mironov Andrey V., Head of the Neurosurgery Department, State Budgetary Healthcare Institution of the Kemerovo Region “Kemerovo Regional Clinical Cardiology Dispensary n.a. Academician L.S. Barbarash”, research assistant at the Laboratory of Cell Technologies, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
6, Sosnoviy Blvd, Kemerovo, 650002
L. V. Antonova
Russian Federation
Antonova Larisa V., PhD, the Head of the Laboratory of Cell Technologies
6, Sosnoviy Blvd, Kemerovo, 650002
R. S. Tarasov
Russian Federation
Tarasov Roman S., MD, PhD, Head of the Laboratory of Reconstructive Surgery for Multivessel and Polyvascular Disease, Head of the Department of Cardiac Surgery
6, Sosnoviy Blvd, Kemerovo, 650002
References
1. Bonati L.H., Dobson J., Featherstone R.L., Ederle J., van der Worp H.B., de Borst G.J., Mali W.P., Beard J.D., Cleveland T., Engelter S.T., Lyrer P.A., Ford G.A., Dorman P.J., Brown M.M. Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the international carotid stenting study (ICSS) randomised trial. Lancet. 2015; 385: 529–38. doi:10.1016/S0140-6736(14)61184-3
2. Abbott A.L., Paraskevas K.I., Kakkos S.K., Golledge J., Eckstein H.H., Diaz-Sandoval L.J., Cao L., Fu Q., Wijeratne T., Leung T.W., Montero-Baker M., Lee B.C., Pircher S., Bosch M., Dennekamp M., Ringleb P. Systematic review of guidelines for the management of asymptomatic and symptomatic carotid stenosis. Stroke. 2015; 46: 3288–3301. doi:10.1161/STROKEAHA.115.003390.
3. Hussain M.A., Mamdani M., Tu J.V., Saposnik G., Aljabri B., Bhatt D.L., Verma S., Al-Omran M. Long-term outcomes of carotid endarterectomy versus stenting in a multicenter population-based canadian study. Ann Surg. 2018; 268(2): 364–373. doi:10.1097/SLA.0000000000002301
4. Pechenkin A.A., Lyzikov A.A. Carotid endarterectomy: outcomes and prospects. Novosti Khirurgii. 2014; 22(2): 231238. (In Russian)
5. Naylor A.R., Ricco J.B., de Borst G.J., Debus S., de Haro J., Halliday A., Hamilton G., Kakisis J., Kakkos S., Lepidi S., Markus H.S., McCabe D.J., Roy J., Sillesen H., van den Berg J.C., Vermassen F., Esvs Guidelines Committee, Kolh P., Chakfe N., Hinchliffe RJ, Koncar I, Lindholt JS, Vega de Ceniga M, Verzini F, Esvs Guideline Reviewers, Archie J, Bellmunt S, Chaudhuri A, Koelemay M, Lindahl AK, Padberg F, Venermo M. Editor’s choice e management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the european society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg. 2018; 55: 3-81. doi:10.1016/j.ejvs.2017.06.021
6. Maertens V., Maertens H., Kint M., Coucke C., Blomme Y. Complication rate after carotid endarterectomy comparing patch angioplasty and primary closure. Ann Vasc Surg. 2016; 30: 248–252. doi:10.1016/j.avsg.2015.07.045
7. Avgerinos E.D., Chaer R.A., Naddaf A., El-Shazly O.M., Marone L., Makaroun M.S. Primary closure after carotid endarterectomy is not inferior to other closure techniques. J Vasc Surg. 2016; 64(3): 678–683. doi:10.1016/j.jvs.2016.03.415.
8. Huizing E., Vos C.G., Hulsebos R.G., van den Akker P.J., Borst G.J., Ünlü Ç. Patch angioplasty or primary closure following carotid endarterectomy for symptomatic carotid artery stenosis. Surg J (NY). 2018; 4(2):e96-e101. doi:10.1055/s-0038-1655757
9. Muto A., Nishibe T., Dardik H., Dardik A. Patches for carotid artery endarterectomy:Current materials and prospects. J Vasc Surg. 2009; 50: 206-13. doi:10.1016/j.jvs.2009.01.062
10. Yarikov A.V., Balyabin A.V., Yashin К.S., Mukhin A.S. Surgical treatment modalities of carotid artery stenosis (review). Sovremennye tehnologii v medicine. 2015; 7(4): 189200. doi:10.17691/stm2015.7.4.25 (In Russian)
11. Olsen S.B., Mcquinn W.C., Feliciano P. Results of carotid endarterectomy using bovine pericardium patch closure, with a review of pertinent literature. Am Surg. 2016; 82(3): 221-226.
12. Чернявский А.М., Ларионов П.М., Столяров М.С., Стародубцев В.Б. Структурная трансформация ксеноперикарда после имплантации в сонную артерию (проспективное исследование). Патология кровообращения и кардиохирургия. 2007; 4: 37-40
13. Weber S.S., Annenberg A.J., Wright C.B., Braverman T.S., Mesh C.L. Early pseudoaneurysm degeneration in biologic extracellular matrix patch for carotid repair. J Vasc Surg. 2014; 59: 1116-8. doi: 10.1016/j.jvs.2013.05.012
14. Alawy M., Tawfick W., ElKassaby M., Shalaby A., Zaki M., Hynes N., Sultan S. Late Dacron patch inflammatory reaction after carotid endarterectomy. Eur J Vasc Endovasc Surg. 2017; 54: 423-429. doi:10.1016/j.ejvs.2017.06.015
15. Ren S., Li X., Wen J., Zhang W., Liu P. Systematic review of randomized controlled trials of different types of patch materials during carotid endarterectomy. PLoS ONE. 2013; 8(1): e55050. doi:10.1371/journal.pone.0055050
16. Fokin A.A., Kuvatov A.V. Long-term outcomes of carotid reconstructions with patch angioplasty. Journal of experimental and clinical surgery. 2013; 6(2): 239-243. doi:10.18499/2070478X-2013-6-2-239-243 (In Russian)
17. Rerkasem K., Rothwell P.M. Systematic review of randomized controlled trials of patch angioplasty versus primary closure and different types of patch materials during carotid endarterectomy. Asian J Surg. 2011; 34: 32-40. doi:10.1016/S1015-9584(11)60016-X.
18. AbuRahma A.F., Hannay R.S., Khan J.H., Robinson P.A., Hudson J.K., Davis E.A. Prospective randomized study of carotid endarterectomy with polytetrafluoroethylene versus collagen-impregnated Dacron (Hemashield) patching: perioperative (30-day) results. J Vasc Surg. 2002; 35(1): 125130. doi:10.1067/mva.2002.119034
19. Chou D., Tulloch A., Cossman D.V., Cohen J.L., Rao R., Barmparas G., Mirocha J., Wagner W. The influence of collagen impregnation of a knitted dacron patch used in carotid endarterectomy. Ann Vasc Surg. 2017; 39: 209–215. doi:10.1016/j.avsg.2016.08.011
20. Karpenko A. A., Starodubtsev V. B., Ignatenko P. V., Kuzhuget R. A., Kim I. N., Gorbatykh V. N. Immediate and longterm outcomes of carotid bifurcation remodeling. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2013; 17(1):21-24. doi:10.21688/1681-3472-2013-1-21-24 (In Russian)
21. Chernyavskii A.M. Stolyarov M.S., Starodubtsev V.B., Vinogradova T.E., Al'sov S.A. Sravnitel'nye dolgosrochnye rezul'taty operatsii karotidnoi endarterektomii s plastikoi zaplatami iz ksenoperikarda, obrabotannogo diepoksisoedineniyami, i autoveny. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2007. 4: 46-50. (In Russian)
22. Bisdas T., Pichlmaier M., Bisdas S., Haverich A., Teebken O.E. Early neurologic outcome after bovine pericardium versus venous patch angioplasty in 599 patients undergoing carotid endarterectomy. Vascular. 2010; 18(3): 147–153. doi:10.2310/6670.2010.00022
23. Texakalidis P., Giannopoulos S., Charisis N., Giannopoulos S., Karasavvidis T., Koullias G., Jabbour P. A meta-analysis of randomized trials comparing bovine pericardium and other patch materials for carotid endarterectomy. J Vasc Surg. 2018; 68(4): 1241-1256. doi:10.1016/j.jvs.2018.07.023.
24. Harrison G.J., How T.V., Poole R.J., Brennan J.A., Naik J.B., Vallabhaneni S.R., Fisher R.K. Closure technique after carotid endarterectomy influences local hemodynamics. J Vasc Surg. 2014;60:418-27. doi:10.1016/j.jvs.2014.01.069
25. Radke D., Jia W., Sharma D., Fena K., Wang G., Goldman J., Zhao F. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development. Adv Healthc Mater. 2018; 7(15): e1701461. doi:10.1002/adhm.201701461
26. Schaner P.J., Martin N.D., Tulenko T.N., Shapiro I.M., Tarola N.A., Leichter R.F., Carabasi R.A., DiMuzio P.J. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004; 40(1): 146-153. doi:10.1016/j.jvs.2004.03.033
27. Martin N.D., .Schaner P.J., Tulenko T.N., Shapiro I.M., Dimatteo C.A., Williams T.K., Hager E.S., DiMuzio P.J. In vivo behavior of decellularized vein allograft. J Surg Res. 2005; 129(1): 17-23. doi:10.1016/j.jss.2005.06.037
28. Gao L-P., Du M-J., Lv J-J., Schmull S., Huang R-T., Li J. Use of human aortic extracellular matrix as a scaffold for construction of patient-specific tissue engineered vascular patch. Biomed Mater 2017;12(6): 065006. doi:10.1088/1748-605X/aa801b
29. Mirsadraee S., Wilcox H.E., Korossis S.A., Kearney J.N., Watterson K.G., Fisher J., Ingham E. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng. 2006. 12(4): 763-773. doi:10.1089/ten.2006.12.763
30. Wilshaw S-P., Kearney J.N., Fisher J., Ingham E. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 2006; 12(8): 2117-2129. doi:10.1089/ten.2006.12.2117
31. van Steenberghe M., Schubert T., Guiot Y., Bouzin C., Bollen X., Gianello P. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model. Cell Tissue Bank. 2017; 18(2): 249–262. doi:10.1007/s10561-017-9610-0
32. van Steenberghe M., Schubert T., Bouzin C., Caravaggio C., Guiot Y., Xhema D., Gianello P. Enhanced vascular biocompatibility and remodeling of decellularized and secured xenogeneic/allogeneic matrices in a porcine model. Eur Surg Res. 2018; 59: 58–71. doi:10.1159/000487591
33. Cho S-W., Park H.J., Ryu J.H., Kim S.H., Kim Y.H., Choi C.Y., Lee M-J., Kim J-S., Jang I-S., Kim D-I., Kim B-S.. Vascular patches tissue-engineered with autologous bone marrowderived cells and decellularized tissue matrices. Biomaterials. 2005; 26: 1915–1924. doi:10.1016/j.biomaterials.2004.06.018
34. Ostdiek A.M., Grant S., Grant D. Mechanical and in vitro characterisation of decellularised porcine aortic tissue conjugated with gold nanoparticles as a vascular repair material. Int J Nano Biomater. 2015; 6 (1): 1-17. doi:10.1504/IJNBM.2015.073145
35. Brizard C.P., Brink J., Horton S.B., Edwards G.A., Galati J.C., Neethling W.M.L. New engineering treatment of bovine pericardium confers outstanding resistance to calcification in mitral and pulmonary implantation in a juvenile sheep model. J Thorac Cardiovasc Surg. 2014; 148: 3194-3201. doi:10.1016/j.jtcvs.2014.08.002
36. Prabhu S., Armes J.E., Bell D., Justo R., Venugopal P., Karl T., Alphonso N. Histologic evaluation of explanted tissue-engineered bovine pericardium (CardioCel). Semin Thorac Cardiovasc Surg. 2017; 29(3): 356-363. doi:10.1053/j.semtcvs.2017.05.017
37. Cho S-W., Jeon O., Lim J.E., Gwak S-J., Kim S-S., Choi CY., Kim D-I., Kim B-S.. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow– derived cells and a hybrid biodegradable polymer scaffold. J Vasc Surg. 2006; 44: 1329-40. doi:10.1016/j.jvs.2006.07.032
38. Shin'oka T., Matsumura G., Hibino N., Naito Y., Watanabe M., Konuma T., Sakamoto T., Nagatsu M., Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005; 129(6): 1330-8.
39. Mettler BA, Sales VL, Stucken CL, Anttila V, Mendelson K, Bischoff J, Mayer JE Jr. Stem cell–derived, tissue-engineered pulmonary artery augmentation patches in vivo. Ann Thorac Surg. 2008; 86: 132–41. doi:10.1016/j.jtcvs.2004.12.047
40. Ksiazek A.A., Frese L., Dijkman P.E., Sanders B., Motta S.E., Weber B., Hoerstrup S.P. Puncturing of lyophilized tissue engineered vascular matrices enhances the efficiency of their recellularization. Acta Biomater. 2018; 71: 474-485. doi:10.1016/j.actbio.2018.02.029
41. Iwai S., Sawa Y., Taketani S., Torikai K., Hirakawa K., Matsuda H. Novel tissue-engineered biodegradable material for reconstruction of vascular wall. Ann Thorac Surg 2005; 80: 1821–8. doi:10.1016/j.athoracsur.2005.03.139
42. Takahashi H., Yokota T., Uchimura E., Miyagawa S., Ota T., Torikai K., Saito A., Hirakawa K., Kitabayashi K., Okada K., Sawa Y., Okita Y. Newly developed tissue-engineered material for reconstruction of vascular wall without cell seeding. Ann Thorac Surg. 2009; 88: 1269 –76. doi:10.1016/j.athoracsur.2009.04.087
43. Ichihara Y., Shinoka T., Matsumura G., Ikada Y., Yamazaki K. A new tissue-engineered biodegradable surgical patch for high-pressure systems. Interact CardioVasc Thorac Surg. 2015; 20: 768–76. doi:10.1093/icvts/ivv017
44. Kim C-W., Kim M-K., Kim S-G., Park Y-W., Park Y-T., Kim D-W., Seok H. Angioplasty using 4-hexylresorcinolincorporated silk vascular patch in rat carotid defect model. Appl Sci. 2018; 8: 2388. doi:10.3390/app8122388
45. Pandis L., Zavan B., Bassetto F., Ferroni L., Iacobellis L., Abatangelo G., Lepidi S., Cortivo R., Vindigni V. Hyaluronic acid biodegradable material for reconstruction of vascular wall: a preliminary study in rats. Microsurgery. 2011; 31(2): 138-145. doi:10.1002/micr.20856
46. Thitiwuthikiat P., Ii M., Saito T., Asahi M., Kanokpanont S., Tabata Y. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A. 2015; 21(7-8): 1309-19. doi:10.1089/ten.TEA.2014.0237
47. Talacua H., Smits A.I.P., Muylaert D.E.P., van Rijswijk J.W., Vink A., Verhaar M.C., Driessen-Mol A., van Herwerden L.A., Bouten C.V., Kluin J., Baaijens F.P.T. In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only. Tissue Eng Part A. 2015; 21(19-20): 2583–2594. doi:10.1089/ten.TEA.2015.0066
48. Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Y.L., Barbarash L.S. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex issues of cardiovascular diseases. 2018; 7(2): 25-36. doi: 10.17802/2306-1278-2018-7-2-25-36
49. Williams C., Xie A.W., Emani S., Yamato M., Okano T., Emani S.M., Wong J.Y. A comparison of human smooth muscle and mesenchymal stem cells as potential cell sources for tissueengineered vascular patches. Tissue Eng Part A. 2012; 18(910): 986-98. doi:10.1089/ten.TEA.2011.0172
50. Rim N.G., Yih A., Hsi P., Wang Y., Zhang Y., Wong J.Y. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches. Biomaterials. 2018; 181: 126139. doi:10.1016/j.biomaterials.2018.07.047
Review
For citations:
Sevostyanova V.V., Mironov A.V., Antonova L.V., Tarasov R.S. VASCULAR PATCHES FOR ARTERIAL RECONSTRUCTION, CHALLENGES AND ADVANCED TECHNOLOGIES. Complex Issues of Cardiovascular Diseases. 2019;8(3):116-129. (In Russ.) https://doi.org/10.17802/2306-1278-2019-8-3-116-129