Neurophysiological status of patients with non-valve atrial fibrillation
https://doi.org/10.17802/2306-1278-2019-8-4S-22-31
Abstract
Aim. To evaluate the neuropsychological parameters from the main cognitive domains (neurodynamic functions, attention and short-term memory) and the brain electrical activity in patients with non-valve atrial fibrillation (AF).
Methods. 21 patients with the mean age of 61 [56; 67] years with non-valve AF who were admitted to the Department of Interventional Diagnosis and Treatment at the Research Institute for Complex Issues of Cardiovascular Disease were included in the study. The control group consisted of 17 healthy individuals with the mean age of 55 [49; 62] years. All patients underwent neuropsychological screening and computerized testing of neurodynamic functions, attention and short-term memory along with electroencephalographic studies. Statistical analysis was performed using the STATISTICA 10.0 software package.
Results. Mild cognitive impairment was observed in 43% of patients with non-valve AF accompanied by ischemic brain matter changes according to the findings of magnetic resonance imaging. Patients with AF had slower complex sensorimotor reaction, more errors, worse directed attention, memorization of words and meaningless syllables in comparison with healthy individuals. In addition, patients with AF and healthy subjects had differences in the fronto-occipital gradient of theta-2 rhythm. The worst neurodynamic parameters were associated with a greater power of theta rhythms predominantly in the posterior parts of the brain only in patients with AF.
Conclusion. Patients with non-valve AF had cognitive deficit with impaired executive control, attention and short-term memory as well as the slowing of cortical electrical activity in comparison to healthy individuals. The data obtained in our study are beneficial for developing an individual approach to prevent the development and progression of cognitive impairment in patients with AF.
About the Authors
O. A. TrubnikovaRussian Federation
Trubnikova Olga A. - PhD, Head of the Laboratory of Neurovascular Pathology, Department of Multivessel and Polyvascular Disease.
6, Sosonoviy Blvd., Kemerovo, 650002
I. V. Tarasova
Russian Federation
Tarasova Irina V. - PhD, leading researcher at the Laboratory of Ultrasound and Electrophysiological Research Methods, Department of Cardiovascular Disease Diagnosis.
650002, Kemerovo, 6, Sosonoviy Blvd.
I. D. Syrova
Russian Federation
Syrova Irina D. - research assistant at the Laboratory of Neurovascular Pathology, Department of Multivessel and Polyvascular Disease
6, Sosonoviy Blvd., Kemerovo, 650002
A. V. Solodukhin
Russian Federation
Solodukhin Anton V. - laboratory assistant at the Laboratory of Neurovascular Pathology, Department of Multivessel and Polyvascular Disease.
6, Sosonoviy Blvd., Kemerovo, 650002
D. S. Kupriyanova
Russian Federation
Kupriyanova Darya S. - laboratory assistant at the Laboratory of Ultrasound and Electrophysiological Research Methods, Department of Cardiovascular Disease Diagnosis.
6, Sosonoviy Blvd., Kemerovo, 650002
N. A. Kochergin
Russian Federation
Kochergin Nikita A. - PhD, researcher at the Laboratory for Interventional Diagnostic and Treatment Methods.
6, Sosonoviy Blvd., Kemerovo, 650002
R. S. Tarasov
Russian Federation
Tarasov Roman S. - PhD, Head of the Laboratory for Reconstructive Surgery of Multivessel and Polyvascular Disease, Head of the Department of Cardiac Surgery.
6, Sosonoviy Blvd., Kemerovo, 650002
V. I. Ganiukov
Russian Federation
Ganyukov Vladimir I. - PhD, Head of the Laboratory of Interventional Diagnostic and Treatment Methods.
6, Sosonoviy Blvd., Kemerovo, 650002
References
1. Saglietto A., Matta M., Gaita F., Jacobs V., Bunch T.J., Anselmino M. Stroke-independent contribution of atrial fibrillation to dementia: a meta-analysis. Open Heart. 2019;6(1):e000984. doi:10.1136/openhrt-2018-000984
2. Hahne K., Mönnig G., Samol A. Atrial fibrillation and silent stroke: links, risks, and challenges. Vasc Health Risk Manag. 2016; 12: 65-74. doi: 10.2147/VHRM.S81807.eCollection2016.
3. Gorelick P.B., Counts S.E., Nyenhuis D. Vascular cognitive impairment and dementia. Biochim Biophys Acta. 2016; 1862(5):860-8.
4. Liu D.S., Chen J., Jian W.M., Zhang G.R., Liu Z.R. The association of atrial fibrillation and dementia incidence: a metaanalysis of prospective cohort studies. J Geriatr Cardiol. 2019; 16(3):298-306. doi: 10.11909/j.issn.1671-5411.2019.03.006.
5. Sepehri Shamloo A., Dagres N., Müssigbrodt A., Stauber A., Kircher S., Richter S., Dinov B., Bertagnolli L., Husser-Bollmann D., Bollmann A., Hindricks G., Arya A. Atrial fibrillation and cognitive impairment: new insights and future directions. Heart Lung Circ. 2019 Jun 21. pii: S14439506(19)31321-6. doi: 10.1016/j.hlc.2019.05.185.
6. Dietzel J., Haeusler K.G., Endres M. Does atrial fibrillation cause cognitive decline and dementia? Europace. 2018; 20(3):408-419. doi: 10.1093/europace/eux031.
7. Anselmino M., Scarsoglio S., Saglietto A., Gaita F., Ridolfi L. Transient cerebral hypoperfusion and hypertensive events during atrial fibrillation: a plausible mechanism for cognitive impairment. Sci Rep 2016; 6:28635. doi: 10.1038/srep28635.
8. Dagres N., Chao T.F., Fenelon G., Aguinaga L., Benhayon D., Benjamin E.J. еt al. European Heart Rhythm Association (EHRA)/ Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on arrhythmias and cognitive function: what is the best practice? J Arrhythm. 2018; 34(2): 99-123. doi: 10.1002/joa3.12050.
9. Bunch T.J., Galenko O., Graves K.G., Jacobs V., May H.T. Atrial fibrillation and dementia: exploring the association, defining risks and improving outcomes. Arrhythm Electrophysiol Rev. 2019;8(1):8-12. doi: 10.15420/aer.2018.75.2.
10. Jacobs V., May H.T., Bair T.L., Crandall B.G., Cutler M.J., Day J.D., Mallender C., Osborn J.S., Stevens S.M., Weiss J.P., Woller S.C., Bunch T.J. Long-term populationbased cerebral ischemic event and cognitive outcomes of direct oral anticoagulants compared with warfarin among long-term anticoagulated patients for atrial fibrillation. Am J Cardiol. 2016; 118(2):210-4. doi: 10.1016/j.amjcard.2016.04.039.
11. Nishtala A., Piers R.J., Himali J.J., Beiser A.S., Davis-Plourde K.L., Saczynski J.S., McManus D.D., Benjamin E.J., Au R. Atrial fibrillation and cognitive decline in the Framingham Heart Study. Heart Rhythm. 2018; 15(2):166-172. doi: 10.1016/j.hrthm.2017.09.036.
12. Başar E., Düzgün A. The brain as a working syncytium and memory as a continuum in a hyper timespace: Oscillations lead to a new model. Int J Psychophysiol. 2016; 103:199-214. Doi: 10.1016/j.ijpsycho.2015.02.019
13. Mazaheri A., Segaert K., Olichney J., Yang J.C., Niu Y.Q.,Shapiro K., Bowman H. EEG oscillations during word processing predict MCI conversion to Alzheimer's disease. Neuroimage Clin. 2017; 17:188-197. doi: 10.1016/j.nicl.2017.10.009.
14. Tarasova I.V. Significance of resting state electroencephalogram for diagnosis of cognitive disorders in cardiac surgery patients. Siberian medical journal. 2019; 34 (1): 18–23. doi: 10.29001/2073-8552-2019-34-1-18-23 (In Russian)
15. Trubnikova O.A., Kagan E.S., Kuprijanova T.V., Maleva O.V., Argunova Y.A., Kukhareva I.N.1Neuropsychological status of patients with stable coronary artery disease and factors affecting it. Complex Issues of Cardiovascular Diseases. 2017; 6(1):112-121. (In Russian)
16. Tarasova I.V., Trubnikova O.A., Syrova I.D., Akbirov R.M., Barbarash O.L. Long-term results of a neurophysiological examination of patients with cognitive decline who underwent coronary artery bypass grafting. Neurological journal. 2018; 23 (5): 229-240. (In Russian)
17. Rivard L, Khairy P. Mechanisms, clinical significance, and prevention of cognitive impairment in patients with atrial fibrillation. Can J Cardiol. 2017;33:1556–1564. doi: 10.1016/j.cjca.2017.09.024.
18. Diener H.C., Hart R.G., Koudstaal P.J., Lane D.A., Lip G.Y.H. Atrial fibrillation and cognitive function: JACC review topic of the week. J Am Coll Cardiol. 2019;73:612–619. doi: 10.1016/j.jacc.2018.10.077.
19. Shea S., Di Tullio M. Atrial fibrillation, silent cerebral ischemia, and cognitive function. J Am Coll Cardiol. 2013;62(21):1998-1999. doi: 10.1016/j.jacc.2013.06.025.
20. Poggesi A., Inzitari D., Pantoni L. Atrial fibrillation and cognition: epidemiological data and possible mechanisms. Stroke. 2015; 46(11):3316-21. doi: 10.1161/STROKEAHA.115.008225.
21. Trubnikova O. A., Barbarash O. L., Maleva O. V., Kupriyanova T. V., Kukhareva I. N. Adherence to therapy in patients with coronary heart disease depending on the level of cognitive status. Lechashchij vrach. 2017; 10: 53–55. (In Russian)
22. Hsu C.L., Best J.R., Davis J.C., Nagamatsu L.S., Wang S., Boyd L.A., Hsiung G.R., Voss M.W., Eng J.J., Liu-Ambrose T. Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. Br J Sports Med. 2018; 52(3):184-191. doi: 10.1136/bjsports-2016-096846.
23. van den Berg E., Geerlings M.I., Biessels G.J., Nederkoorn P.J., Kloppenborg R.P. White matter hyperintensities and cognition in mild cognitive impairment and Alzheimer’s disease: A Domain-Specific Meta-Analysis. J Alzheimers Dis. 2018; 63(2): 515-527. doi: 10.3233/JAD-170573.
24. Al-Qazzaz N.K., Ali S-H.B.M, Ahmad S.A., Islam M.S., Escudero J. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis. Med Biol Eng Comput. 2018; 56(1):137-157. doi: 10.1007/s11517-017-1734-7.
25. Tarasova I.V., Trubnikova O.A., Barbarash O.L. EEG and clinical factors associated with mild cognitive impairment in coronary artery disease patients. Dement Geriatr Cogn Disord. 2018; 46(5-6):275-284. doi: 10.1159/000493787
26.
Review
For citations:
Trubnikova O.A., Tarasova I.V., Syrova I.D., Solodukhin A.V., Kupriyanova D.S., Kochergin N.A., Tarasov R.S., Ganiukov V.I. Neurophysiological status of patients with non-valve atrial fibrillation. Complex Issues of Cardiovascular Diseases. 2019;8(4S):22-31. (In Russ.) https://doi.org/10.17802/2306-1278-2019-8-4S-22-31