Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

Скаффолды как системы доставки биологически активных и лекарственных веществ

https://doi.org/10.17802/2306-1278-2020-9-1-92-102

Полный текст:

Аннотация

В статье проанализированы и систематизированы современные данные об использовании скаффолдов как систем контролируемой доставки веществ. Рассматриваются предпосылки и основания для использования скаффолдов в качестве систем доставки. Обсуждаются текущие стратегии создания систем контролируемой доставки биологически активных и лекарственных веществ на основе продуктов скаффолд-технологий. Приводится классификация систем доставки веществ на основе скаффолдов. Отдельное внимание уделено разработкам двухфазных систем доставки веществ с использованием наночастиц. Показано разнообразие наночастиц и их преимущества как носителей веществ, применяемых в двухкомпонентных системах доставки. Приводятся современные примеры разработок систем доставки веществ и перспективы развития регенеративной медицины.

Об авторах

М. Н. Егорихина
Федеральное государственное бюджетное образовательное учреждение высшего образования «Приволжский исследовательский медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Егорихина Марфа Николаевна- кандидат биологических наук, старший научный сотрудник научно-исследовательского института экспериментальной онкологии и биомедицинских технологий федерального государственного бюджетного образовательного учреждения высшего образования «Приволжский исследовательский медицинский университет».

пл. Минина и Пожарского, 10/1, Нижний Новгород, Российская Федерация, 603005



П. А. Мухина
Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»
Россия

Мухина Полина Алексеевна- магистрант второго года обучения кафедры молекулярной биологии и иммунологии института биологии и биомедицины федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского». 

пр. Гагарина, 23, Нижний Новгород, Российская Федерация, 603950



И. И. Бронникова
Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»
Россия

Бронникова Ирина Ивановна, магистрант второго года обучения кафедры молекулярной биологии и иммунологии института биологии и биомедицины федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского».

пр. Гагарина, 23, Нижний Новгород, Российская Федерация, 603950



Список литературы

1. Park U., Kim K. Multiple growth factor delivery for skin tissue engineering applications. Biotechnol Bioprocess Eng. 2017; 22 (6): 659–670. doi:10.1007/s12257-017-0436-1

2. Azevedo H.S., Pashkuleva I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev. 2015; 94: 63–76. doi:10.1016/j.addr.2015.08.003

3. Kim H.S., Sun X., Lee J.H., Kim H.W., Fu X., Leong K.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019; 146: 209– 239. doi:10.1016/j.addr.2018.12.014

4. Davoodi P., Lee L.Y., Xu Q., Sunil V., Sun Y., Soh S., Wang C.H. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev. 2018; 132: 104–138. doi:10.1016/j.addr.2018.07.002

5. Sarigol-Calamak E., Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration. Adv Exp Med Biol. 2018; 1078: 475–493. doi:10.1007/978-981-13-0950-2_25

6. Carmagnola I., Ranzato E., Chiono V. Scaffold functionalization to support a tissue biocompatibility. In: Functional 3D Tissue Engineering Scaffolds. Materials, Technologies and Applications. Deng Y., Kuiper J., editors. Elsevier Ltd. 2018; p. 255–277. doi:10.1016/B978-0-08-100979-6.00011-2

7. Sane M.S., Misra N., Quintanar N.M., Jones C.D. Biochemical characterization of pure dehydrated binate amniotic membrane: role of cytokines in the spotlight. Regen Med. 2018; 13: 689–703. doi:10.2217/rme-2018-0085

8. Han G., Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017; 34 (3): 599–610. doi:10.1007/s12325-017-0478-y

9. Park J.W., Hwang S.R., Yoon I.S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017; 22 (8): 1–20. doi:10.3390/molecules22081259

10. Evrova O., Buschmann J. In vitro and in vivo effects of PDGF-BB delivery strategies on tendon healing: a review. Eur Cells Mater. 2017; 34: 15–39. doi:10.22203/eCM.v034a02

11. Xu X., Zheng L., Yuan Q., Zhen G., Crane J.L., Zhou X., Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018; 6 (2): 1–31. doi:10.1038/s41413-017-0005-4

12. Karaman S., Leppanen V.M., Alitalo K. Vascular endothelial growth factor signaling in development and disease. Dev. 2018; 145 (14): 1–8. doi:10.1242/dev.151019

13. Bikle D.D., Tahimic C., Chang W., Wang Y., Philippou A., Barton E.R. Role of IGF-I signaling in muscle bone interactions. Bone. 2015; 80: 79–88. doi:10.1016/j.bone.2015.04.036

14. Maddaluno L., Urwyler C., Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Dev. 2017; 144 (22): 4047–4060. doi:10.1242/dev.152587

15. Seeger M.A., Paller A.S. The roles of growth factors in keratinocyte migration. Adv Wound Care. 2015; 4 (4): 213– 224. doi:10.1089/wound.2014.0540

16. El Bialy I., Jiskoot W., Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017; 34 (6): 1152– 1170. doi:10.1007/s11095-017-2147-x

17. Kang J.M., Yoon J.K., Oh S.J., Kim B.S., Kim S.H. Synergistic therapeutic effect of three-dimensional stem cell clusters and angiopoietin-1 on promoting vascular regeneration in ischemic region. Tissue Eng. (Part A). 2018; 24 (7-8): 616– 630. doi:10.1089/ten.tea.2017.0260

18. Russow G., Jahn D., Appelt J., Mardian S., Tsitsilonis S., J. Keller. Anabolic therapies in osteoporosis and bone regeneration. Int J Mol Sci. 2018; 20 (1): 1–17. doi:10.3390/ijms20010083

19. Julier Z., Park A.J., Briquez P.S., Martino M.M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017; 53: 13–28. doi:10.1016/j.actbio.2017.01.056

20. Graiet H., Lokchine A., Francois P., Velier M., Grimaud F., Loyens M., Berda-Haddad Y., Veran J., Dignat-George F., Sabatier F., Magalon J. Use of platelet-rich plasma in regenerative medicine: technical tools for correct quality control. BMJ Open Sport Exerc Med. 2018; 4 (1): 1111–1115. doi:10.1136/bmjsem-2018-000442

21. Burnouf T., Strunk D., Koh M.B.C., Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016; 76: 371–387. doi:10.1016/j.biomaterials.2015.10.065

22. Ramaswamy Reddy S.H., Reddy R., Babu N.C., Ashok G.N. Stem-cell therapy and platelet-rich plasma in regenerative medicines: a review on pros and cons of the technologies. J Oral Maxillofac Pathol. 2018; 22 (3): 367–374. 23. Samadi P., Sheykhhasan M., Khoshinani H.M. The use of platelet-rich plasma in aesthetic and regenerative medicine: a comprehensive review. Aesthetic Plast Surg. 2018; 43: 803– 814. doi:10.1007/s00266-018-1293-9

23. Yuasa M., Yamada T., Taniyama T., Masaoka T., Xuetao W., Yoshii T., Horie M., Yasuda H., Uemura T., Okawa A., Sotome S. Dexamethasone enhances osteogenic differentiation of bone marrow-and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. Plos One. 2015; 10 (2): 1–23. doi:10.1371/journal.pone.0116462

24. Ortiz de Montellano P.R. Cytochrome P450-activated prodrugs. Future Med Chem. 2013; 5 (2): 213–228. doi:10.4155/ fmc.12.197

25. Williams D.F. Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol. 2019; 7: 1–10. doi:10.3389/fbioe.2019.00127

26. Eltom A., Zhong G., Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng. 2019; 2019: 1–13. doi:10.1155/2019/3429527

27. Bruzauskaite I., Bironaite D., Bagdonas E., Bernotiene E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology. 2016; 68 (3): 355–369. doi:10.1007/s10616-015-9895-4

28. Chen F.M., Zhang M., Wu Z.F. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010; 31 (24): 6279–6308. doi:10.1016/j.biomaterials.2010.04.053

29. Sun Y., Han X., Wang X., Zhu B., Li B., Chen Z., Ma G., Wan M. Sustained release of IGF-1 by 3D mesoporous scaffolds promoting cardiac stem cell migration and proliferation. Cell Physiol Biochem. 2018; 49: 2358–2370. doi:10.1159/000493836

30. Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G., Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017; 10 (4): 1–21. doi:10.3390/ph10040096

31. Muhleder S., Pill K., Schaupper M., Labuda K., Priglinger E., Hofbauer P., Charwat V., Marx U., Redl H., Holnthoner W. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adiposederived stem cells. Stem Cell Res Ther. 2018; 9 (1): 1–13. doi:10.1186/s13287-017-0764-2

32. Safari J., Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014; 18 (2): 85–99. doi:10.1016/j.jscs.2012.12.009

33. Brudno Y., Mooney D.J. On-demand drug delivery from local depots. J Control Release. 2015; 219: 8–17. doi:10.1016/j. jconrel.2015.09.011

34. Kim S., Chen Y., Ho E.A., Liu S. Reversibly pHresponsive polyurethane membranes for on-demand intravaginal drug delivery. Acta Biomater. 2017; 47: 100–112. doi:10.1016/j. actbio.2016.10.006

35. Wei L., Chen J., Zhao S., Ding J., Chen X. Thermosensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater. 2017; 58: 44–53. doi:10.1016/j.actbio.2017.05.053

36. Mitchell A.C., Briquez P.S., Hubbell J.A., Cochran J.R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016; 30: 1–12. doi:10.1016/j. actbio.2015.11.007

37. Atienza-roca P., Cui X., Hooper G.J., Woodfield T.B.F., Lim K.S. Growth factor delivery systems for tissue engineering and regenerative medicine. Adv Exp Med Biol. 2018; 1078: 245–269. doi:10.1007/978-981-13-0950-2_13

38. Draenert F.G., Nonnenmacher A.L., Kämmerer P.W., Goldschmitt J., Wagner W. BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials. Clin Oral Implants Res. 2012; 24 (7): 750– 757. doi:10.1111/j.1600-0501.2012.02481.x

39. Wang Z., Wang Z., Lu W.W., Zhen W., Yang D., Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017; 9 (10): e435. doi:10.1038/am.2017.171

40. Huang S., Yang Y., Yang Q., Zhao Q., Ye X. Engineered circulatory scaffolds for building cardiac tissue. J Thorac Dis. 2018; 10 (20): 2312–2328. doi:10.21037/jtd.2017.12.92

41. Bouyer M., Guillot R., Lavaud J., Plettinx C., Olivier C., Curry V., Boutonnat J., Coll J.L., Peyrin F., Josserand V., Bettega G., Picart C. Surface delivery of tunable doses of BMP2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials. 2016; 104: 168–181. doi:10.1016/j. biomaterials.2016.06.001

42. Venkanna A., Kwon O.W., Afzal S., Jang C., Cho K.H., Yadav D.K., Kim K., Park H.G., Chun K.H., Kim S.Y., Kim M.H. Pharmacological use of a novel scaffold, anomeric N,Ndiarylamino tetrahydropyran: molecular similarity search, chemocentric target profiling, and experimental evidence. Sci Rep. 2017; 7 (1): 1–17. doi:10.1038/s41598-017-12082-3

43. Awada H.K., Johnson N.R., Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release. 2015; 207: 7–17. doi:10.1016/j.jconrel.2015.03.034

44. Fathi-Achachelouei M., Knopf-Marques H., Ribeiro da Silva C.E., Barthes J., Bat E., Tezcaner A., Vrana N.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019; 7 (113): 1–22. doi:10.3389/fbioe.2019.00113

45. Tan H.L., Teow S.Y., Pushpamalar J. Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering. 2019; 6 (17): 1–18. doi:10.3390/ bioengineering6010017

46. Gao M., Chen J., Lin G., Li S., Wang L., Qin A., Zhao Z., Ren L., Wang Y., Tang B.Z. Long-term tracking of the osteogenic differentiation of mouse BMSCs by aggregationinduced emission nanoparticles. ACS Appl Mater Interfaces. 2016; 8 (28): 17878–17884. doi:10.1021/acsami.6b05471

47. Tang Z., He C., Tian H., Ding J., Hsiao B.S., Chu B., Chen X. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. 2016; 60: 86–128. doi:10.1016/j. progpolymsci.2016.05.005

48. Hasan A., Morshed M., Memic A., Hassan S., Webster T.J., Marei H.E.S. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018; 13: 5637–5655. doi:10.2147/IJN.S153758

49. Ali Y., Alqudah A., Ahmad S., Abd Hamid S., Farooq U. Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym. 2019; 22 (1): 91–97. doi:10.1 080/15685551.2019.1591681

50. Nicolas J., Mura S., Brambilla D., MacKiewicz N., Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymerbased nanocarriers for drug delivery. Chem Soc Rev. 2013; 42 (3): 1147–1235. doi:10.1039/c2cs35265f

51. Herranz-Blanco B., Ginestar E., Zhang H., Hirvonen J., Santos H.A. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm. 2017; 516 (1-2): 100–105. doi:10.1016/j.ijpharm.2016.11.024

52. Jayaraman P., Gandhimathi C., Venugopal J.R., Becker D.L., Ramakrishna S., Srinivasan D.K. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev. 2015; 94: 77–95. doi:10.1016/j.addr.2015.09.007

53. Lin T.W., Chien Y., Lin Y.Y., Wang M.L., Yarmishyn A.A., Yang Y.P., Hwang D.K., Peng C.H., Hsu C.C., Chen S.J., Chien K.H. Establishing liposome-immobilized dexamethasonereleasing PDMS membrane for the cultivation of retinal pigment epithelial cells and suppression of neovascularization. Int J Mol Sci. 2019; 20 (2): 1–17. doi:10.3390/ijms20020241

54. Li Y., Bai Y., Pan J., Wang H., Li H., Xu X., Fu X., Shi R., Luo Z., Li Y., Li Q., Fuh J.Y.H., Wei S. A hybrid 3D-printed aspirinladen liposome composite scaffold for bone tissue engineering. J Mater Chem B. 2019; 7: 619–629. doi:10.1039/C8TB02756K

55. Chen Y., Chen S., Kawazoe N., Chen G. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks. Sci Rep. 2018; 8 (1): 1–12. doi:10.1038/ s41598-018-32495-y


Для цитирования:


Егорихина М.Н., Мухина П.А., Бронникова И.И. Скаффолды как системы доставки биологически активных и лекарственных веществ. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(1):92-102. https://doi.org/10.17802/2306-1278-2020-9-1-92-102

For citation:


Egorikhina M.N., Mukhina P.A., Bronnikova I.I. Scaffolds as drug and bioactive compound delivery systems. Complex Issues of Cardiovascular Diseases. 2020;9(1):92-102. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-1-92-102

Просмотров: 223


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)