Preview

Complex Issues of Cardiovascular Diseases

Advanced search

RELATIONSHIP BETWEEN HEPATORENAL INDEX AND ECHOGENICITY OF CAROTID ATHEROSCLEROTIC PLAQUES ACCORDING TO GSM-ANALYSIS IN PATIENTS WITH ASYMPTOMATIC CAROTID ATHEROSCLEROSIS

https://doi.org/10.17802/2306-1278-2024-13-4-13-150-158

Abstract

Highlights

  • The severity of liver steatosis is inversely correlated with the echogenicity of carotid atherosclerotic plaques in middle-aged patients with carotid atherosclerosis.
  • Hepatorenal index is an ultrasound marker of hypoechoic carotid atherosclerotic plaques.
  • The inclusion of liver steatosis in cardiovascular risk stratification systems can potentially improve the prediction of adverse cardiovascular events.

 

Annotation

Aim. To study the relationship between hepatorenal index (HRI) and echogenicity of carotid atherosclerotic plaques (CAP).

Methods. The study included patients with CVD risk factors. The patients' age ranged from 40 to 64 years. The ultrasound study of the brachiocephalic arteries was carried out in standard modes. Echogenicity of CAP in carotid arteries was assessed by GSM-analysis. HRI was defined as the ratio of the median gray scale of the liver to the median gray scale of the kidney. Severity of hepatic steatosis was determined by semiquantitative method using Hamaguchi scale.

Results. 139 patients underwent examination according to a unified protocol. Among those patients 104 were selected for the analysis. Assessing the relationship between echogenicity of carotid CAPs, Hamaguchi scale score and HRI, we have found inverse statistically significant correlations. The median GSM of CAP in the study group was 57,0 (39,7; 80,0) conventional units. In order to determine the potential diagnostic value of Hamaguchi scale and HRI for detecting CAPs with lower than median echogenicity for the given group of patients, we performed ROC analysis. According to logistic regression analysis adjusted for sex, age, obesity, and abdominal obesity, an increase in HRI greater than 1,34 was associated with increased odds ratio of carotid CAPs with GSM < 57 conventional units (less than 50th percentile) by a factor of 2,66 (95% CI 1,09–6,45; p = 0,031), whereas the increase associated with CAPs with GSM < 39,7 conventional units (less than 25th  percentile) was 2,95-fold (95% CI 1,08–8,08; p = 0,035).

Conclusion. The severity of hepatic steatosis as assessed by the Hamaguchi scale and HRI was inversely correlated with the echogenicity of carotid CAPs in middle-aged patients with carotid atherosclerosis. An increase in HRI > 1,34 with 65,8% probability predicted the presence of carotid CAPs with a GSM of less than 57. Odds ratio of carotid CAPs with GSM < 57 conventional units (less than the 50th percentile) and GSM < 39,7 (less than 25th percentile) with HRI values > 1,34 were 2,66 and 2,95, respectively, after adjustment for intervening factors.

About the Authors

Alla S. Kuznetsova
Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”
Russian Federation

РhD, Assistant at the Department of Advanced Therapy, Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”, Chelyabinsk, Russian Federation



Anastasia I. Dolgushina
Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”
Russian Federation

MD, PhD, Head of the Department of Advanced Therapy, Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”, Chelyabinsk, Russian Federation



Vadim V. Genkel
Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”
Russian Federation

PhD, Assistant of the Department of Propaedeutics of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South Ural State Medical University”, Chelyabinsk, Russian Federation



References

1. Veracruz N., Hameed B., Saab S., Wong R.J. The Association Between Nonalcoholic Fatty Liver Disease and Risk of Cardiovascular Disease, Stroke, and Extrahepatic Cancers. J Clin Exp Hepatol. 2021;11(1):45-81. doi: 10.1016/j.jceh.2020.04.018.

2. Simon T.G., Roelstraete B., Hagström H., Sundström J., Ludvigsson J.F. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2022;71(9):1867-1875.. doi: 10.1136/gutjnl-2021-325724.

3. Pais R., Giral P., Khan J.F., Rosenbaum D., Housset C., Poynard T., Ratziu V.; LIDO Study Group. Fatty liver is an independent predictor of early carotid atherosclerosis. J Hepatol. 2016;65(1):95-102. doi: 10.1016/j.jhep.2016.02.023.

4. Tang A.S.P., Chan K.E., Quek J., Xiao J., Tay P., Teng M., Lee K.S., Lin S.Y., Myint M.Z., Tan B., Sharma V.K., Tan D.J.H., Lim W.H., Kaewdech A., Huang D., Chew N.W., Siddiqui M.S., Sanyal A.J., Muthiah M., Ng C.H. Non-alcoholic fatty liver disease increases Risk of Carotid Atherosclerosis and Ischemic Stroke. An Updated Meta-Analysis with 135,602 Individuals. Clin Mol Hepatol. 2022;28(3):483-496. doi: 10.3350/cmh.2021.0406.

5. Genkel V.V., Kuznetsova A.S., Lebedev E.V., Shaposhnik I.I. Factors associated with echogenicity of atherosclerotic plaques in patients aged 40-64 years with carotid atherosclerosis. Cardiology. 2021;61(6):35-40. doi: 10.18087/cardio.2021.6.n1536. (In Russian)

6. Cloutier G., Cardinal M.R., Ju Y., Giroux M.F., Lanthier S., Soulez G. Carotid Plaque Vulnerability Assessment Using Ultrasound Elastography and Echogenicity Analysis. AJR Am J Roentgenol. 2018;211(4):847-855. doi: 10.2214/AJR.17.192

7. Loomba R., Wong R., Fraysse J., Shreay S., Li S., Harrison S., Gordon S.C. Nonalcoholic fatty liver disease progression rates to cirrhosis and progression of cirrhosis to decompensation and mortality: a real world analysis of Medicare data. Aliment Pharmacol Ther. 2020;51(11):1149-1159. doi: 10.1111/apt.15679.

8. Brel N.K., Gruzdeva O.V., Kokov A.N., Masenko V.L., Dyleva Yu.A., Belik E.V., Barbarash O.L. Interrelation of visceral obesity and coronary calcinosis in ischemic heart disease. Therapeutic Archives. 2021;93(12):1428-1434. doi: 10.26442/00403660.2021.12.201277 (In Russian)

9. Garbuzenko D.V., Belov D.V. Nonalcoholic fatty liver disease as an independent factor of cardiometabolic risk of cardiovascular disease. Experimental and Clinical Gastroenterology. 2021;10 (194):22-34. doi: 10.31146/1682-8658-ecg-194-10-22-34 (In Russian)

10. Lauridsen B.K., Stender S., Kristensen T.S., Kofoed K.F., Køber L., Nordestgaard B.G., Tybjærg-Hansen A. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur Heart J. 2018;39(5):385-393. doi: 10.1093/eurheartj/ehx662.

11. Chandrasekharan K., Alazawi W. Genetics of Non-Alcoholic Fatty Liver and Cardiovascular Disease: Implications for Therapy? Front Pharmacol. 2020;10:1413. doi: 10.3389/fphar.2019.01413.

12. Wu M., Zha M., Lv Q., Xie Y., Yuan K., Zhang X., Liu X. Non-alcoholic fatty liver disease and stroke: A Mendelian randomization study. Eur J Neurol. 2022;29(5):1534-1537. doi: 10.1111/ene.15277.

13. Chiriac S., Stanciu C., Girleanu I., Cojocariu C., Sfarti C., Singeap A.M., Cuciureanu T., Huiban L., Muzica C.M., Zenovia S., Nastasa R., Trifan A. Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases: The Heart of the Matter. Can J Gastroenterol Hepatol. 2021;2021:6696857. doi: 10.1155/2021/6696857.

14. Zhan R., Qi R., Huang S., Lu Y., Wang X., Jiang J., Ruan X., Song A. The correlation between hepatic fat fraction evaluated by dual-energy computed tomography and high-risk coronary plaques in patients with non-alcoholic fatty liver disease. Jpn J Radiol. 2021;39(8):763-773. doi: 10.1007/s11604-021-01113-9.

15. Park H.E., Lee H., Choi S.Y., Kwak M.S., Yang J.I., Yim J.Y., Chung G.E. Clinical significance of hepatic steatosis according to coronary plaque morphology: assessment using controlled attenuation parameter. J Gastroenterol. 2019;54(3):271-280. doi: 10.1007/s00535-018-1516-5.

16. Kweon Y.N., Ko H.J., Kim A.S., Choi H.I., Song J.E., Park J.Y., Kim S.M., Hong H.E., Min K.J. Prediction of Cardiovascular Risk Using Nonalcoholic Fatty Liver Disease Scoring Systems. Healthcare (Basel). 2021;9(7):899. doi: 10.3390/healthcare9070899.

17. Johnson S.I., Fort D., Shortt K.J., Therapondos G., Galliano G.E., Nguyen T., Bluth E.I. Ultrasound Stratification of Hepatic Steatosis Using Hepatorenal Index. Diagnostics (Basel). 2021;11(8):1443. doi: 10.3390/diagnostics11081443.

18. Sprynger M., Rigo F., Moonen M., Aboyans V., Edvardsen T., de Alcantara M.L., Brodmann M., Naka K.K., Kownator S., Simova I., Vlachopoulos C., Wautrecht J.C., Lancellotti P.; EACVI Scientific Documents Committee. Focus on echovascular imaging assessment of arterial disease: complement to the ESC guidelines (PARTIM 1) in collaboration with the Working Group on Aorta and Peripheral Vascular Diseases. Eur Heart J Cardiovasc Imaging. 2018;19(11):1195-1221. doi: 10.1093/ehjci/jey103.

19. Marshall R.H., Eissa M., Bluth E.I., Gulotta P.M., Davis N.K. Hepatorenal index as an accurate, simple, and effective tool in screening for steatosis. AJR Am J Roentgenol. 2012;199(5):997-1002. doi: 10.2214/AJR.11.6677.

20. Tanpowpong N., Panichyawat S. Comparison of sonographic hepatorenal ratio and the degree of hepatic steatosis in magnetic resonance imaging-proton density fat fraction. J Ultrason. 2020;20(82):e169-e175. doi: 10.15557/JoU.2020.0028.

21. Hamaguchi M., Kojima T., Itoh Y., Harano Y., Fujii K., Nakajima T., Kato T., Takeda N., Okuda J., Ida K., Kawahito Y., Yoshikawa T., Okanoue T. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol. 2007;102(12):2708-15. doi: 10.1111/j.1572-0241.2007.01526.x.

22. Martín-Rodríguez J.L., Arrebola J.P., Jiménez-Moleón J.J., Olea N., González-Calvin J.L. Sonographic quantification of a hepato-renal index for the assessment of hepatic steatosis in comparison with 3T proton magnetic resonance spectroscopy. Eur J Gastroenterol Hepatol. 2014;26(1):88-94. doi: 10.1097/MEG.0b013e3283650650.

23. Hsiao C.C., Teng P.H., Wu Y.J., Shen Y.W., Mar G.Y., Wu F.Z. Severe, but not mild to moderate, non-alcoholic fatty liver disease associated with increased risk of subclinical coronary atherosclerosis. BMC Cardiovasc Disord. 2021;19;21(1):244. doi: 10.1186/s12872-021-02060-z.

24. Hsu P.F., Wang Y.W., Lin C.C., Wang Y.J., Ding Y.Z., Liou T.L., Huang S.S., Lu T.M., Chan W.L., Lin S.J., Leu H.B. The association of the steatosis severity in fatty liver disease with coronary plaque pattern in general population. Liver Int. 2021;41(1):81-90. doi: 10.1111/liv.14637.


Supplementary files

Review

For citations:


Kuznetsova A.S., Dolgushina A.I., Genkel V.V. RELATIONSHIP BETWEEN HEPATORENAL INDEX AND ECHOGENICITY OF CAROTID ATHEROSCLEROTIC PLAQUES ACCORDING TO GSM-ANALYSIS IN PATIENTS WITH ASYMPTOMATIC CAROTID ATHEROSCLEROSIS. Complex Issues of Cardiovascular Diseases. 2024;13(4):150-158. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4-13-150-158

Views: 184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)