RESORPTION RATE OF POLYHYDROXYALKANOATEBASED SCAFFOLDS AND SCAFFOLDS WITH MULTIPOTENT MESENCHYMAL STROMAL CELLS
https://doi.org/10.17802/2306-1278-2015-1-39-45
Abstract
The article presents the findings of histological analysis of local tissue response to subcutaneous implantation of polyhydroxyalkanoatebased scaffolds and scaffolds with multipotent mesenchymal stromal cells. There were no rejection and acute inflammatory response of the implanted biopolymeric materials. The connective tissue capsule has formed around the implanted materials. Active cell infiltration of the implanted material and its vascularization have been observed. The implanted scaffolds undergo slow biodegradation. The presence of multipotent mesenchymal stromal cells on the scaffold surface slows down the resorption rate of the polymer.
About the Authors
M. V. NasonovaRussian Federation
For correspondence:Nasonova Marina Address: 6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. 8 (3842) 64-42-38 E-mail: nanomv@kemcardio.ru
I. V. Antonova
Russian Federation
V. G. Matveeva
Russian Federation
N. V. Doronina
Russian Federation
V. A. Ezhov
Russian Federation
A. Yu. Burago
Russian Federation
T. V. Glushkova
Russian Federation
Yu. A. Kudryavtseva
Russian Federation
References
1. Murphy S. V., Atala A. Organ engineering – combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays. 2013; 35: 163- 172. doi: 10.1002/bies.201200062.
2. Saxena A. R. Tissue engineering: Present concepts and strategies. Journal of Indian Association of Pediatric Surgery.
3. ; 10: 14-19. doi: 10.4103/0971-9261.16069.
4. Fuchs J. R., Nasseri B. A., Vacanti J. P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001; 72: 577–591. doi:10.1016/S0003-4975(01)02820-X.
5. Sarkar S. Schmitz-Rixen T., Hamilton G., Seifalian A. M. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med. Biol. Eng. Comput. 2007; 45 (4): 327-336. doi:10.1007/s11517-007-0176z.
6. Guilak F., Butler D., Goldstein S. A., Baaijens F. P. Biomechanics and mechanobiology in functional tissue engineering. Journal of Biomechanics. 2014; 47(9): 1933–1940. doi: 10.1016/j.jbiomech.2014.04.019.
7. Kuppan P., Vasanthan K. S., Sundaramurthi D., Krishnan U. M. Development of poly (3-hydroxybutyrate-co-3- hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical and chemical stimuli. Biomacromolecules. 2011; 12 (9): 3156-3165. doi: 10.1021/bm200618w.
8. Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000; 25(10): 1503–1555. doi:10.1016/ S0079-6700(00)00035-6.
9. Петренко А . Ю., Петренко Ю. А . Трансплантация мезенхимальных стромальных клеток: перспективы и реальность. МЕДИЦИНА СЬОГОДНI I ЗАВТРА. 2011; 1-2: 50-51. Petrenko A. Yu., Petrenko Yu. A. Transplantatsiya mezenhimalnyih stromalnyih kletok: perspektivyi i realnost. MEDITSINA SЬOGODNI I ZAVTRA. 2011; 1-2: 50-51. [In Russ].
10. Patel D. M., Shah J., Srivastava A. S. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine. Stem Cells International. 2013; 496218: 15. doi:org/ 10.1155/ 2013/496218. Статья поступила: 28.11.2014
Review
For citations:
Nasonova M.V., Antonova I.V., Matveeva V.G., Doronina N.V., Ezhov V.A., Burago A.Yu., Glushkova T.V., Kudryavtseva Yu.A. RESORPTION RATE OF POLYHYDROXYALKANOATEBASED SCAFFOLDS AND SCAFFOLDS WITH MULTIPOTENT MESENCHYMAL STROMAL CELLS. Complex Issues of Cardiovascular Diseases. 2015;(1):39-45. (In Russ.) https://doi.org/10.17802/2306-1278-2015-1-39-45