VISUALIZATION OF BRAIN NEUROPLASTICITY IN THE ASPECT OF POST-STROKE REHABILITATION
Abstract
Highlights
Stroke is one of the leading causes of death and disability worldwide. Minimizing the consequences of the disease and potentiating the restoration of functionally significant areas of the brain is an important task of neurorehabilitation. At the same time, the search for effective rehabilitation strategies continues, taking into account the expansion of knowledge in the field of neuroplasticity based on the progress of neuroimaging capabilities in studying the mechanisms of post-stroke structural and functional reorganization of the brain.
Abstract
Neuroplasticity of the human brain is characterized by the ability to change its organization as a result of adaptation to external or internal stimuli. Local brain lesions, for example during a stroke, lead to functional and cognitive impairments of the brain, which is manifested by neurological deficits. Existing neuroimaging methods allow us to study both morpho-anatomical and functional brain rearrangements. Post-stroke rehabilitation methods, along with the possibilities of visualizing the processes of neuroplasticity of brain, make it possible to evaluate the effectiveness of the measures taken and the patient's recovery. In this review, we aimed to conduct a retrospective analysis of studies on the mechanisms of neuroplasticity of brain and their relationship to recent advances in neurorehabilitation using the example of ischemic stroke. Timely and adequate use of rehabilitation practices in the post-stroke period is necessary for the most effective recovery of the patient while optimizing economic costs.
About the Authors
Yuliya A. StankevichRussian Federation
PhD, MD, Head of the Laboratory of Functional Neuroimaging, Senior Researcher, Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation; Senior Lecturer at the Center for Postgraduate Medical Education, Institute of Medicine and Medical Technologies, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk State University”, Novosibirsk, Russian Federation
Vladimir V. Popov
Russian Federation
MD, Junior Researcher at the Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation; 2nd year Resident at the Center for Postgraduate Medical Education, Institute of Medicine and Medical Technologies, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk State University”, Novosibirsk, Russian Federation
Olga B. Bogomyakova
Russian Federation
PhD, MD, Researcher at the Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation; Senior Lecturer at the Center for Postgraduate Medical Education, Institute of Medicine and Medical Technologies, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk State University”, Novosibirsk, Russian Federation
Lyubov M. Vasilkiv
Russian Federation
PhD, MD, Researcher at the Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation; Senior Lecturer at the Center for Postgraduate Medical Education, Institute of Medicine and Medical Technologies, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk State University”, Novosibirsk, Russian Federation
Andrey A. Tulupov
Russian Federation
PhD, MD, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Neurosciences, Chief Researcher at the Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation; Deputy Director, Professor at the Center for Postgraduate Medical Education, Institute of Medicine and Medical Technologies, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk State University”, Novosibirsk, Russian Federation
Renad Z. Sagdeev
Russian Federation
PhD, Academician of the Russian Academy of Sciences, Scientific Head of the Federal State Budgetary Institution of Science “International Tomography Center” of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
References
1. Puderbaugh M., Emmady P.D. Neuroplasticity. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK557811/. (accessed 09.10.2024)
2. Roth G.A., Johnson C., Abajobir A., Abd-Allah F., Abera S.F., Abyu G., Ahmed M., Aksut B., Alam T., Alam K. et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. doi: 10.1016/j.jacc.2017.04.052..
3. Xing Y., Bai Y. A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol. 2020;57(10):4218-4231. doi: 10.1007/s12035-020-02021-1. Epub 2020 Jul 20. PMID: 32691303.
4. Cabral D.F., Fried P., Koch S., Rice J., Rundek T., Pascual-Leone A., Sacco R., Wright C.B., Gomes-Osman J. Efficacy of mechanisms of neuroplasticity after a stroke. Restor Neurol Neurosci. 2022;40(2):73-84. doi: 10.3233/RNN-211227.
5. Vos Cato M. H., Mason Natasha L., Kuypers Kim P. C. Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Front. Psychiatry. 2021;12:724606. doi: 10.3389/fpsyt.2021.724606.
6. Gulyaeva N.V. Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry (Mosc). 2017;82(3):237-242. doi: 10.1134/S0006297917030014.
7. Loginova M.V. Rol' nejronal'nyh kinaz v adaptacii cns k vozdejstviju faktorov ishemii. [dissertation] Nizhnij Novgorod; 2022. (In Russian)
8. Magee J.C., Grienberger C. Synaptic Plasticity Forms and Functions. Annu Rev Neurosci. 2020;43:95-117. doi: 10.1146/annurev-neuro-090919-022842.
9. Gatto R.G. Molecular and microstructural biomarkers of neuroplasticity in neurodegenerative disorders through preclinical and diffusion magnetic resonance imaging studies. J. Integr. Neurosci. 2020, 19(3), 571–592. doi: 10.31083/j.jin.2020.03.165.
10. Tsai S.T.., Liew H.K., Li H.M., Lin S.Z., Chen S.Y. Harnessing Neurogenesis and Neuroplasticity with Stem Cell Treatment for Addictive Disorders. Cell Transplantation. 2019;28(9-10):1127-1131. doi:10.1177/0963689719859299.
11. Turolla A., Venneri A., Farina D., Cagnin A., Cheung V.C.K. Rehabilitation Induced Neural Plasticity after Acquired Brain Injury. Neural Plast. 2018;2018:6565418. doi: 10.1155/2018/6565418.
12. Mateos-Aparicio P., Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci. 2019;13:66. doi: 10.3389/fncel.2019.00066.
13. Gatto R.G. Molecular and microstructural biomarkers of neuroplasticity in neurodegenerative disorders through preclinical and diffusion magnetic resonance imaging studies. J Integr Neurosci. 2020;19(3):571-592. doi: 10.31083/j.jin.2020.03.165..
14. Kouremenou I., Piper M., Zalucki O. Adult Neurogenesis in the Olfactory System: Improving Performance for Difficult Discrimination Tasks? Bioessays. 2020;42(10):e2000065. doi: 10.1002/bies.202000065.
15. Jurkowski M.P., Bettio L., K Woo E., Patten A., Yau S.Y., Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444.
16. Cao X., Wang Z., Chen X., Liu Y., Abdoulaye I.A., Ju S., Zhang S., Wu S., Wang Y., Guo Y. Changes in Resting-State Neural Activity and Nerve Fibres in Ischaemic Stroke Patients with Hemiplegia. Brain Topogr. 2023 Mar;36(2):255-268. doi: 10.1007/s10548-022-00937-6.
17. Gatto R.G. Molecular and microstructural biomarkers of neuroplasticity in neurodegenerative disorders through preclinical and diffusion magnetic resonance imaging studies. J Integr Neurosci. 2020;19(3):571-592. doi: 10.31083/j.jin.2020.03.165..
18. Spampinato M.V., Chan C., Jensen J.H., Helpern J.A., Bonilha L., Kautz S.A., Nietert P.J., Feng W. Diffusional Kurtosis Imaging and Motor Outcome in Acute Ischemic Stroke. AJNR Am J Neuroradiol. 2017;38(7):1328-1334. doi: 10.3174/ajnr.A5180..
19. Zhang S., Zhu W., Zhang Y., Yao Y., Shi J., Wang C.Y., Zhu W. Diffusional kurtosis imaging in evaluating the secondary change of corticospinal tract after unilateral cerebral infarction. Am J Transl Res. 2017;9(3):1426-1434.
20. Li S., Wang Y., Jiang D., Ni D., Kutyreff C.J., Barnhart T.E., Engle J.W., Cai W. Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral Ischemia/Reperfusion Injury. Adv Sci (Weinh). 2019;7(4):1902600. doi: 10.1002/advs.201902600.
21. Melo R.T.R., Damazio L.C.M., Lima M.C., Pereira V.G., Okano B.S., Monteiro B.S., Natali A.J., Carlo R.J.D., Maldonado I.R.S.C. Effects of physical exercise on skeletal muscles of rats with cerebral ischemia. Braz J Med Biol Res. 2019;52(12):e8576. doi: 10.1590/1414-431X20198576
22. Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Hohn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft R, Nieswandt B. Loss of Orai2-mediated capacitative Ca(2+) entry is neuroprotective in acute ischemic stroke. Stroke. 2019;50(11):3238-3245. doi: 10.1161/STROKEAHA.119.025357.
23. Zhang Y., Mao X., Lin R., Li Z., Lin J. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca(2+)- mediated neurotoxicity in a rat model of cerebral ischaemiaMol Neurobiol reperfusion injury. Acupunct Med. 2018;36(6):401-407. doi: 10.1136/acupmed-2016-011353.
24. Luo H.Y., Rahman M., Bobrovskaya L., Zhou X.F. The level of proBDNF in blood lymphocytes is correlated with that in the brain of rats with photothrombotic ischemic stroke. Neurotox Res. 2019l;36(1):49-57. doi: 10.1007/s12640-019-00022-0.
25. Chen C., Chencheng Z., Cuiying L., Xiaokun G. Plasmacytoid dendritic cells protect against middle cerebral artery occlusion induced brain injury by priming regulatory T cells. Front Cell Neurosci. 2020 Jan 31;14:8. doi: 10.3389/fncel.2020.00008.
26. Mourtzi T., Dimitrakopoulos D., Kakogiannis D., Salodimitris C., Botsakis K., Meri D.K., Anesti M., Dimopoulou A., Charalampopoulos I., Gravanis A., Matsokis N., Angelatou F., Kazanis I. Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20. Stem Cell Res Ther. 2021;12(1):335. doi: 10.1186/s13287-021-02398-3.
27. Yamaguchi N., Sawano T., Fukumoto K., Nakatani J., Inoue S., Doe N., Yanagisawa D., Tooyama I., Nakagomi T., Matsuyama T., Tanaka H. Voluntary running exercise after focal cerebral ischemia ameliorates dendritic spine loss and promotes functional recovery. Brain Res. 2021;1767:147542. doi: 10.1016/j.brainres.2021.147542.
28. Shen H., Wang J., Shen L., Wang H., Li W., Ding X. Phosphatase and tensin homolog deletion enhances neurite outgrowth during neural stem cell differentiation. Neuropathology. 2020;40(3):224-231. doi: 10.1111/neup.12633.
29. Ito M., Aswendt M., Lee A.G., Ishizaka S., Cao Z., Wang E.H., Levy S.L., Smerin D.L., McNab J.A., Zeineh M., Leuze C., Goubran M., Cheng M.Y., Steinberg G.K. RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke. Stroke. 2018;49(9):2191-2199. doi: 10.1161/STROKEAHA.118.021508.
30. Jeevanandham B., Kalyanpur T., Gupta P., Cherian M. Comparison of post-contrast 3D-T1-MPRAGE, 3D-T1-SPACE and 3D-T2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI. Br J Radiol. 2017;90(1074):20160834. doi: 10.1259/bjr.20160834.
31. Dyatlova A.A., Stankevich Y.A., Bogomyakova O.B., Vasilkiv L.V., Tulupov A.A. Possibilities of diffusion tensor imaging in the dynamic assessment of an ischemic stroke. Russian Electronic Journal of Radiology. 2022;12(3): 29-38. doi: 10.21569/2222-7415-2022-12-3-29-38. (In Russian)
32. Turkin A.M., Pogosbekyan E.L., Tonoyan A.C., Shults E.I., Maximov I.I., Dolgushin M.B., Khachanova N.V., Fadeeva L.M., Melnikova-Pitskhelauri T.V., Pitskhelauri D.I., Pronin I.N., Kornienko V.N. Diffusion Kurtosis Imaging in the Assessment of Peritumoral Brain Edema in Glioblastomas and Brain Metastases. Medical Visualization. 2017;(4):97-112. doi:10.24835/1607-0763-2017-4-97-112. (In Russian)
33. Afandiev R.M., Zakharova N.E., Pogosbekyan E.L., Potapov A.A., Pronin I.N. Diffusion-tensor and Diffusion-kurtosis Magnetic Resonance Imaging in the Assessment of Diffuse Axonal Injury (Literature Review). Radiology - Practice. 2022;(1):77-90. doi:10.52560/2713-0118-2022-1-77-90. (In Russian)
34. Tonoyan A.S. , Pronin I.N. Pitskhelauri, D.I. , Zakharova N.E. , Khachanova N.V. , Fadeeva L.M. , Pogosbekyan E.L. , Potapov A.A. , Shults E.I. , Alexandrova E.V. , Gavrilov A.G. , Kornienko V.N. Diffusion kurtosis magnetic resonance imaging – a new method of non-gaussian diffusion assessment in neuroradiology. Medical physics. 2014; 64 (4): 57-63. (In Russian)
35. Chen V.C., Kao C.J., Tsai Y.H., McIntyre R.S., Weng J.C. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. J Pers Med. 2021 3;11(3):174. doi: 10.3390/jpm11030174.
36. Anpilogova K.S., Chegina D.S., Ignatova T.S., Efimtsev A.Yu., Trufanov G.E. Structural reorganization of the white matter pathways of the brain in patients with spastic diplegia after translingual neurostimulation. Translational Medicine. 2021;8(4):27-34. doi:10.18705/2311-4495-2021-8-4-27-34. (In Russian)
37. Pogosbekyan E.L., Turkin A.M., Baev A.A., Shults E.I., Khachanova N.V., Maximov I.I., Fadeeva L.M., Pronin I.N., Kornienko V.N. DIFFUSION-KURTOSIS IMAGING IN ASSESMENT OF BRAIN MICROSTRUCTURE. HEALTHY VOLUNTEERS MEASURMENTS. Medical Visualization. 2018;(4):108-126. doi: 10.24835/1607-0763-2018-4-108-126. (In Russian)
38. Räty S., Ruuth R., Silvennoinen K., Sabel B.A., Tatlisumak T., Vanni S. Resting-state Functional Connectivity After Occipital Stroke. Neurorehabil Neural Repair. 2022;36(2):151-163. doi: 10.1177/15459683211062897.
39. Just N., Adriaensen H., Ella A., Chevillard P.M., Batailler M., Dubois J.P., Keller M., Migaud M. Blood oxygen level dependent fMRI and perfusion MRI in the sheep brain. Brain Res. 2021;1760:147390. doi: 10.1016/j.brainres.2021.147390.
40. Rocca M.A., Schoonheim M.M., Valsasina P., Geurts J.J.G., Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076.
41. Al-Arfaj H.K., Al-Sharydah A.M., AlSuhaibani S.S., Alaqeel S., Yousry T. Task-Based and Resting-State Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J Pers Med. 2023;13(2):370. doi: 10.3390/jpm13020370.
42. Azeez AK, Biswal BB. A Review of Resting-State Analysis Methods. Neuroimaging Clin N Am. 2017;27(4):581-592. doi: 10.1016/j.nic.2017.06.001.
43. Bukkieva Т.А., Chegina D.S., Еfimtsev А.Yu., Levchuk A.G., Iskhakov D.K., Sokolov A.V., Fokin V.A., Trufanov G.E. Resting state functional MRI. General issues and clinical application. REJR 2019; 9(2):150-170. doi:10.21569/2222-7415-2019-9-2-150-170. (In Russian)
44. Manzhurtsev A.V., Yakovlev A.N., Bulanov P.A., Menshchikov P.E., Ublinskiy M.V., Melnikov I.A., Akhadov T.A., Semenova N.A. Macromolecular-Suppressed GABA-Edited MR Spectroscopy in the Posterior Cingulate Cortex of Patients With Acute Mild Traumatic Brain Injury. J Magn Reson Imaging. 2023;57(5):1433-1442. doi: 10.1002/jmri.28410.
45. Dąbrowski J., Czajka A., Zielińska-Turek J., Jaroszyński J., Furtak-Niczyporuk M., Mela A., Poniatowski Ł.A., Drop B., Dorobek M., Barcikowska-Kotowicz M., Ziemba A. Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast. 2019;2019:9708905. doi: 10.1155/2019/9708905.
46. Braun R.G., Wittenberg G.F. Motor Recovery: How Rehabilitation Techniques and Technologies Can Enhance Recovery and Neuroplasticity. Semin Neurol. 2021;41(2):167-176. doi: 10.1055/s-0041-1725138.
47. Wang F., Zhang S., Zhou F., Zhao M., Zhao H. Early physical rehabilitation therapy between 24 and 48 h following acute ischemic stroke onset: a randomized controlled trial. Disabil Rehabil. 2022;44(15):3967-3972. doi: 10.1080/09638288.2021.1897168.
48. Belagaje S.R. Stroke Rehabilitation. Continuum (Minneap Minn). 2017;23(1, Cerebrovascular Disease):238-253. doi: 10.1212/CON.0000000000000423.
49. Liu Y., Yin J.H., Lee J.T., Peng G.S., Yang F.C. Early Rehabilitation after Acute Stroke:The Golden Recovery Period. Acta Neurol Taiwan. 2022. Epub ahead of print.
50. Ashcroft S.K., Ironside D.D., Johnson L., Kuys S.S., Thompson-Butel A.G. Effect of Exercise on Brain-Derived Neurotrophic Factor in Stroke Survivors: A Systematic Review and Meta-Analysis. Stroke. 2022;53(12):3706-3716. doi: 10.1161/STROKEAHA.122.039919.
51. Kato A., Hayashi H. Aerobic Exercise for Upper Limb Function in a Patient With Severe Paralysis With Subacute Stroke: A Case Report. Cureus. 2023;15(5):e39502. doi: 10.7759/cureus.39502.
52. Broatch J.R., Zarekookandeh N., Glarin R., Strik M., Johnston L.A., Moffat B.A., Bird L.J., Gunningham K., Churilov L., Johns H.T., Askew C.D., Levinger I., O'Riordan S.F., Bishop D.J., Brodtmann A. Train Smart Study: protocol for a randomised trial investigating the role of exercise training dose on markers of brain health in sedentary middle-aged adults. BMJ Open. 2023;13(5):e069413. doi: 10.1136/bmjopen-2022-069413..
53. Zhang Y., Qiu X., Chen J., Ji C., Wang F., Song D., Liu C., Chen L., Yuan P. Effects of exercise therapy on patients with poststroke cognitive impairment: A systematic review and meta-analysis. Front Neurosci. 2023;17:1164192. doi: 10.3389/fnins.2023.1164192.
54. Lee K.E., Choi M., Jeoung B. Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review. Int J Environ Res Public Health. 2022;19(19):12739. doi: 10.3390/ijerph191912739.
55. Maier M., Ballester B.R., Verschure P.F.M.J. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci. 2019;13:74. doi: 10.3389/fnsys.2019.00074.
56. Dietmann A., Blanquet M., Rösler K.M., Scheidegger O. Effects of high resistance muscle training on corticospinal output during motor fatigue assessed by transcranial magnetic stimulation. Front Physiol. 2023;14:1125974. doi: 10.3389/fphys.2023.1125974.
57. Biderman N., Gershman S.J., Shohamy D. The role of memory in counterfactual valuation. J Exp Psychol Gen. 2023;152(6):1754-1767. doi: 10.1037/xge0001364.
58. Verhoeven F.M., Newell K.M. Unifying practice schedules in the timescales of motor learning and performance. Hum Mov Sci. 2018;59:153-169. doi: 10.1016/j.humov.2018.04.004.
59. Reichelt A.C., Hare D.J., Bussey T.J., Saksida L.M. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci. 2019;42(7):458-470. doi: 10.1016/j.tins.2019.04.003.
60. Reber T.P., Mackay S., Bausch M., Kehl M.S., Borger V., Surges R., Mormann F. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat Commun. 2023;14(1):2496. doi: 10.1038/s41467-023-38190-5.
61. Li C., Kovács G. The effect of short-term training on repetition probability effects for non-face objects. Biol Psychol. 2022;175:108452. doi: 10.1016/j.biopsycho.2022.108452
62. Kim H., Kim J., Lee H.J., Lee J., Na Y., Chang W.H., Kim Y.H. Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot. Neurosci Lett. 2021;740:135424. doi: 10.1016/j.neulet.2020.135424.
63. Vivar C., Peterson B., Pinto A., Janke E., van Praag H. Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired. eNeuro. 2023;10(5):ENEURO.0084-23.2023. doi: 10.1523/ENEURO.0084-23.2023.
64. Norman S.L., Wolpaw J.R., Reinkensmeyer D.J. Targeting neuroplasticity to improve motor recovery after stroke: an artificial neural network model. Brain Commun. 2022;4(6):fcac264. doi: 10.1093/braincomms/fcac264.
65. Banduni O., Saini M., Singh N., Nath D., Kumaran S.S., Kumar N., Srivastava M.V.P., Mehndiratta A. Post-Stroke Rehabilitation of Distal Upper Limb with New Perspective Technologies: Virtual Reality and Repetitive Transcranial Magnetic Stimulation-A Mini Review. J Clin Med. 2023;12(8):2944. doi: 10.3390/jcm12082944.
66. Stockbridge M.D., Bunker L.D., Hillis A.E. Reversing the Ruin: Rehabilitation, Recovery, and Restoration After Stroke. Curr Neurol Neurosci Rep. 2022;22(11):745-755. doi: 10.1007/s11910-022-01231-5.
67. Gregor S., Saumur T.M., Crosby L.D., Powers J., Patterson K.K. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl. 2021;3(2):100111. doi: 10.1016/j.arrct.2021.100111.
68. Demers M., Varghese R., Winstein C. Retrospective Analysis of Task-Specific Effects on Brain Activity After Stroke: A Pilot Study. Front Hum Neurosci. 2022;16:871239. doi: 10.3389/fnhum.2022.871239.
69. Wilkins K.B., Owen M., Ingo C., Carmona C., Dewald J.P.A., Yao J. Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention. Front Neurol. 2017;8:284. doi: 10.3389/fneur.2017.00284..
70. He D, Cao S, Le Y, Wang M, Chen Y, Qian B. Virtual Reality Technology in Cognitive Rehabilitation Application: Bibliometric Analysis. JMIR Serious Games. 2022 Oct 19;10(4):e38315. doi: 10.2196/38315.
71. Munoz-Novoa M., Kristoffersen M.B., Sunnerhagen K.S., Naber A., Alt Murphy M., Ortiz-Catalan M. Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis. Front Hum Neurosci. 2022;16:897870. doi: 10.3389/fnhum.2022.897870.
72. Clark B., Whitall J., Kwakkel G., Mehrholz J., Ewings S., Burridge J. The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database Syst Rev. 20215;10(10):CD012612. doi: 10.1002/14651858.CD012612.pub2.
73. Wissel J., Ri S. Assessment, goal setting, and botulinum neurotoxin a therapy in the management of post-stroke spastic movement disorder: updated perspectives on best practice. Expert Rev Neurother. 2022;22(1):27-42. doi: 10.1080/14737175.2021.2021072.
74. Gail A. Turning decisions into actions. PLoS Biol. 2022;20(12):e3001927. doi: 10.1371/journal.pbio.3001927.
75. Johnson B.P., Cohen L.G. Reward and plasticity: Implications for neurorehabilitation. Handb Clin Neurol. 2022;184:331-340. doi: 10.1016/B978-0-12-819410-2.00018-7
76. Sabah K., Dolk T., Meiran N., Dreisbach G. When less is more: costs and benefits of varied vs. fixed content and structure in short-term task switching training. Psychol Res. 2019;83(7):1531-1542. doi: 10.1007/s00426-018-1006-7.
77. Sidarta A., Lim Y.C., Wong R.A., Tan I.O., Kuah C.W.K., Ang W.T. Current clinical practice in managing somatosensory impairments and the use of technology in stroke rehabilitation. PLoS One. 2022;17(8):e0270693. doi: 10.1371/journal.pone.0270693.
78. Welniarz Q., Roze E., Béranger B., Méneret A., Vidailhet M., Lehéricy S., Pouget P., Hallett M., Meunier S., Galléa C. Identification of a Brain Network Underlying the Execution of Freely Chosen Movements. Cereb Cortex. 2021;32(1):216-230. doi: 10.1093/cercor/bhab204.
79. Stewart J.C., Baird J.F., Lewis A.F., Fritz S.L., Fridriksson J. Effect of behavioural practice targeted at the motor action selection network after stroke. Eur J Neurosci. 2022;56(4):4469-4485. doi: 10.1111/ejn.15754.
80. Sakai K., Goto K., Tanabe J., Amimoto K., Kumai K., Kamio H., Ikeda Y. Effects of visual-motor illusion on functional connectivity during motor imagery. Exp Brain Res. 2021;239(7):2261-2271. doi: 10.1007/s00221-021-06136-2..
81. Bonnavion P., Fernández E.P., Varin C., de Kerchove d'Exaerde A. It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochem Int. 2019;124:200-214. doi: 10.1016/j.neuint.2019.01.009.
82. Hardwick R.M., Caspers S., Eickhoff S.B., Swinnen S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev. 2018;94:31-44. doi: 10.1016/j.neubiorev.2018.08.003.
83. Lugtmeijer S., Lammers N.A., de Haan E.H.F., de Leeuw F.E., Kessels R.P.C. Post-Stroke Working Memory Dysfunction: A Meta-Analysis and Systematic Review. Neuropsychol Rev. 2021;31(1):202-219. doi: 10.1007/s11065-020-09462-4.
84. Tulupov A.A., Korostyshevskaya A.M., Savelov A.A., Stankevich Y.A., Bogomyakova O.B., Vasilkiv L.M., Petrovsky E.D., Zhuravleva K.V., Sagdeev R.Z. Magnetic resonance in the evaluation circulation and mass transfer in human. Russ Chem Bull. 2021;70(12):2266-2277. doi: 10.1007/s11172-021-3344-7.
Supplementary files
Review
For citations:
Stankevich Yu.A., Popov V.V., Bogomyakova O.B., Vasilkiv L.M., Tulupov A.A., Sagdeev R.Z. VISUALIZATION OF BRAIN NEUROPLASTICITY IN THE ASPECT OF POST-STROKE REHABILITATION. Complex Issues of Cardiovascular Diseases. 2024;13(4):214-228. (In Russ.)