Effects of shear stress on the properties of colonyforming endothelial cells in comparison with coronary artery endothelial cells
https://doi.org/10.17802/2306-1278-2022-11-4-90-97
Abstract
Highlights. It is assumed that pre-colonization by endothelial cells of the inner surface of tissue-engineered vessels of small diameter can serve as an effective way to prevent thrombosis. The question of choosing the optimal source of endothelial cells for use in tissue engineering remains debatable. The paper considers the features of the culture of colony-forming endothelial cells obtained from the peripheral blood of patients with coronary heart disease, in comparison with mature endothelial cells from the coronary artery.
Aim. To study the effect of laminar flow on the morphological and functional characteristics of mature endothelial cells and peripheral blood-derived endothelial colony-forming cells.
Methods. Coronary artery endothelial cells were purchased from the Cell Applications, Inc. Colony-forming endothelial cells were obtained from the peripheral blood of patients with coronary artery disease who underwent percutaneous coronary intervention. The cells were isolated using a Ficoll gradient and cultured in EGM-2MV culture medium containing 5% fetal bovine serum. The cells of the experimental group were cultured in µ-Luer plates in a perfusion system with a shear stress of 3 dyn/cm2 . The cultivation time was 2 days. The cells of the control group were cultured under static conditions. At the end of the cultivation we performed immunofluorescent staining for CD31, KDR/CD309, CD144, vWF, type IV collagen, F-actin.
Results. Colony-forming endothelial cells and coronary artery endothelial cells retained high density and viability both under static and laminar flow conditions. Shear stress stimulated a change in the phenotype of colony-forming endothelial cells towards a mature endothelial cells, in particular, a significant increased the expression of KDR/CD309 and CD31. The action of laminar flow reduced the synthesis of von Willebrand factor, stimulated the synthesis of type IV collagen. Shear stress promoted the development of structural rearrangements in cells in response to transduction, which manifested in a change in F-actin fibrils orientation on the flow direction.
Conclusion. Colony-forming endothelial cells showed a characteristic response to the action of shear stress, consisting in a change in morphology, phenotype, and secretory activity of cells, comparable to that of coronary artery endothelial cells.
About the Authors
E. A. VelikanovaRussian Federation
Velikanova Elena A., PhD, researcher at the Laboratory of Cellular Technologies, the Department of Experimental Medicine
6, Sosnoviy Blvd., Kemerovo, 650002
V. G. Matveeva
Russian Federation
Matveeva Vera G., PhD, senior researcher at the Laboratory of Cellular Technologies, the Department of Experimental Medicine
6, Sosnoviy Blvd., Kemerovo, 650002
M. Yu. Khanova
Russian Federation
Khanova Mariam Yu., junior researcher at the Laboratory of Cellular Technologies, the Department of Experimental Medicine
6, Sosnoviy Blvd., Kemerovo, 650002
L. V. Antonova
Russian Federation
Antonova Larisa V., PhD, Head of the Laboratory of Cellular Technologies, the Department of Experimental Medicine
6, Sosnoviy Blvd., Kemerovo, 650002
References
1. Melly L., Torregrossa G., Lee T., Jansens J., Puskas J. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018; 10(3): 1960–1967. doi:10.21037/jtd.2018.02.43
2. Ong C.S., Zhou X., Huang C.Y., Fukunishi T., Zhang H., Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices. 2017; 14(5): 383-392. doi:10.1080/17434440.2017.1324293.
3. Pashneh-Tala S., MacNeil S., Claeyssens F. The TissueEngineered Vascular Graft—Past, Present, and Future. Tissue Eng Part B Rev. 2016; 22(1): 68–100. doi:10.1089/ten.teb.2015.0100
4. Sanchez P.F., Brey E.M., Briceno J.C. Endothelialization Mechanisms in Vascular Grafts. J. Tissue Eng. Regen. Med. 2018; 12: 2164–2178. doi:10.1002/term.2747
5. Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Dehghani F., Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; 10(1): 11-25. doi:10.1016/j.actbio.2013.08.022.
6. Dimitrievska S., Niklason L.E. Historical Perspective and Future Direction of Blood Vessel Developments. Cold Spring Harb Perspect Med. 2018; 8(2): a025742. doi: 10.1101/cshperspect.a025742.
7. Peters E.B. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Eng Part B Rev. 2018; 24(1): 1–24. doi:10.1089/ten.teb.2017.0127
8. Matveeva V, Khanova M, Sardin E, Antonova L, Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018; 19(11): 3453. doi: 10.3390/ijms19113453
9. Kolbe M., Dohle E., Katerla D., Kirkpatrick C.J., Fuchs S. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng Part C Methods. 2010; 16(5): 877-886
10. Fang Y., Wu D., Birukov K.G. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol. 2019; 9(2): 873–904. doi:10.1002/cphy.c180020
11. Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 2003; 95(5): 2081–2088. doi:10.1152/japplphysiol.00232.2003
12. Fisher A.B., Chien S., Barakat A.I., Nerem R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell Mol. Physiol. 2001; 281(3): L529–L533. doi: 10.1152/ajplung.2001.281.3.L529.
13. Roux E., Bougaran P., Dufourcq P., Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol. 2020; 11: 861. doi:10.3389/fphys.2020.00861
14. Liu H., Gong X., Jing X., Ding X., Yao Y., Huang Y., Fan Y. Shear stress with appropriate time-step and amplification enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med. 2017; 11(11): 2965-2978. doi:10.1002/term.2196
15. Melchiorri A.J., Bracaglia L.G., Kimerer L.K., Hibino N., Fisher J.P. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C Methods. 2016; 22(7): 663-70. doi: 10.1089/ten.tec.2015.0562
16. Obi S., Masuda H., Shizuno T., Sato A., Yamamoto K., Ando J., Abe Y., Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol. 2012; 303(6): C595-606. doi:10.1152/ajpcell.00133.2012
17. Egorova A.D., DeRuiter M.C., De Boer H.C., Van De Pas S., Gittenberger-De Groot A.C., Van Zonneveld A.J., Poelmann R.E., Hierck B.P. Endothelial colony-forming cells show a mature transcriptional response to shear stress . Vitr. Cell. Dev. Biol. - Anim. 2012; 48(1): 21.
18. Brown R.A., Shantsila E., Varma C., Lip G.Y. Current Understanding of Atherogenesis. Am J Med. 2017; 130 (3): 268-282
19. Choi S.J., Lillicrap D. A sticky proposition: The endothelial glycocalyx and von Willebrand factor. J Thromb Haemost. 2020; 18(4): 781-785. doi:10.1111/jth.14743.
20. Shim K., Anderson P.J., Tuley E.A., Wiswall E., Evan Sadler J. Platelet–VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood. 2008; 111(2): 651–657. doi:10.1182/blood-2007-05-093021
21. Starke R.D., Ferraro F., Paschalaki K.E., Dryden N.H., McKinnon T.A., Sutton R.E., Payne E.M., Haskard D.O., Hughes A.D., Cutler D.F., Laffan M.A., Randi A.M. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011; 117(3): 1071–1080. doi: 10.1182/blood-2010-01-264507
22. Stratman A.N., Davis G.E. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: Influence on vascular tube remodeling, maturation and stabilization. Microsc Microanal. 2012; 18(1): 68–80. doi:10.1017/S1431927611012402
Review
For citations:
Velikanova E.A., Matveeva V.G., Khanova M.Yu., Antonova L.V. Effects of shear stress on the properties of colonyforming endothelial cells in comparison with coronary artery endothelial cells. Complex Issues of Cardiovascular Diseases. 2022;11(4):90-97. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-4-90-97