Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

ИСПОЛЬЗОВАНИЕ МЕТОДА ЭЛЕКТРОСПИННИНГА В СОЗДАНИИ БИОДЕГРАДИРУЕМЫХ СОСУДИСТЫХ ГРАФТОВ МАЛОГО ДИАМЕТРА: ПРОБЛЕМЫ И РЕШЕНИЯ (ОБЗОР)

https://doi.org/10.17802/2306-1278-2015-3-12-22

Полный текст:

Аннотация

Об авторах

Лариса Валерьевна Антонова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, г. Кемерово, Сосновый бульвар, д. 6


В. Г. Матвеева
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, г. Кемерово, Сосновый бульвар, д. 6


Л. С. Барбараш
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
650002, г. Кемерово, Сосновый бульвар, д. 6


Список литературы

1. World Health Organization [Internet]. Cardiovascular diseases. Fact Sheet. 2012; 317. Available from: http://www.who.int/mediacentre/factsheets/fs317/. [10 March 2015, date last accessed].

2. Stegemann J. P. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 2007; 13: 2601–2613.

3. Gong Z., Niklason L. E. Blood vessels engineered from human cells. Trends Cardiovasc. Med. 2006; 16: 153–156.

4. Browning M. B., Dempsey D., Guiza V., Becerra S., Rivera J., Russell B. et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 2011; 8: 1010–1021.

5. Tu J.V., PashosC.L., NaylorC.D., ChenE.L., Normand S.L., Newhouse J. P. et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med. 1997; 336: 1500–1505.

6. Ratcliffe A. Tissue engineering of vascular grafts. Matrix. Biol. 2000; 19: 353–357.

7. Edelman E. R. Vascular tissue engineering: designer arteries. Circ. Res. 1999; 85: 1115–1117.

8. Anderson C., Odand M., Richardson C., Ney A., Nykamp B., Ausmus G. et al. Renewed Interest in Bovine Heterograft for Vascular Access: A Comparison Between Polytetrafluoroethylene and Bovine. 9-th Biennial Symposium on Dialysis Access Vascular Access for Hemodialysis IX Symposium. May 6–7, Lake Buena Vista. 2004; Р. 73.

9. Teebken O. E., Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur. J. Vasc. Endovasc. Surg. 2002; 23: 475–485.

10. Григорян А. С. Испытания новых тканеинженерных кровеносных сосудов в экспериментальных моделях. Клеточная трансплантология и тканевая инженерия. 2006; 3(5): 23–24. Grigoryan A. S. Ispytaniya novykh tkaneinzhenernykh krovenosnykh sosudov v eksperimental’nykh modelyakh. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2006; 3(5): 23–24. [In Russ].

11. Kapadia M. R., Popowich D. A., Kibbe M. R. Modified prosthetic vascular conduits. Circulation. 2008; 117(14): 1873–1882.

12. Ramakrishna S., Fujihara K., Teo W. E., Yong T., Ma Z., Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today. 2006; 9: 40–50.

13. Ratcliffe A. Tissue engineering of vascular grafts. Matrix. Biol 2000; 19: 353–357.

14. L’Heureux N., Dusserre N., Marini A., Garrido S., de la Fuente L., McAllister T. Technology Insight: the evolution of tissue-engineered vascular grafts – from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 2007; 4: 389–395.

15. Barnes C. P., Sell S. A., Boland E. D., Simpson D. G., Bowlin G. L. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug. Deliv. Rev. 2007; 59: 1413–1433.

16. Greenwald S. E., Berry C. L. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 2000; 190: 292–299.

17. Agarwal S., Wendorff J. H., Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008; 49: 5603–5621.

18. Boudriot U., Dersch R., Greiner A., Wendorff J. H. Electrospinning approaches toward scaffold engineering – a brief overview. Artif. Organs. 2006; 30: 785–792.

19. Vasita R., Katti D. S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006; 1: 15–30.

20. Burger C., Hsiao B. S., Chu B. Nanofibrous materials and their applications. Annual Review of Materials Research. 2006; 36: 333–368.

21. Tan S., Huang X., Wu B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. Polym. Int. 2007; 56: 1330–1339.

22. Dersch R., Graeser M., Greiner A., Wendorff J. H. Electrospinning of nanofibres: towards new techniques, functions, and applications. Aust. J. Chem. 2007; 60: 719–728.

23. GreinerA., Wendorff J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007; 46: 5670–5703.

24. McKenna K. A., Hinds M. T., Sarao R. C. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomaterialia. 2012; 8 (1): 225–233.

25. Koch S., Flanagan T. C., Sachweh J. S. Fibrin-polylactidebased tissue-engineered vascular graft in the arterial circulation. Biomaterials. 2010; 31 (17): 4731–4739.

26. Shum-Tim D., Stock U., Hrkach J. Tissue engineering of autologous aorta using a new biodegradable polymer. Annals of Thoracic Surgery. 1999; 68 (6): 2298–2305.

27. Shin’oka T., Imai Y., Ikada Y. Transplantation of a tissueengineered pulmonary artery. The New England Journal of Medicine. 2001; 344 (7): 532–533.

28. DeValenceS., Tille J., MugnaiD. Long termperformance of polycaprolactone vascular grafts in a rat abdominal aorta replacementmodel. Biomaterials. 2012; 33 (1): 38–47.

29. De Valence S., Tille J. C., Giliberto J. P. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomaterilia. 2012; 8 (11): 3914–3920.

30. Kuwabara F., Narita Y., Yamawaki-Ogata A. Longterm results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacementmodel. Journal of ArtificialOrgans. 2012; 15 (4): 399–405.

31. Iwasaki K., Kojima K., Kodama S. Bioengineered three-layered robust and elastic artery using hemodynamicallyequivalent pulsatile bioreactor. Circulation. 2008; 118 (14, supplement): S. 52–57.

32. Wu W., Allen R. A., Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nature Medicine. 2012; 18 (7): 1148–1153.

33. Roh J. D., Nelson G. N., Brennan M. P. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials. 2008; 29 (10): 1454–1463.

34. Uchida T., Ikeda S., Oura H. Development of biodegradable scaffolds based on patient-specific arterial configuration. Journal of Biotechnology. 2008; 133 (2): 213–218.

35. Pektok E., Nottelet B., Tille J. Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008; 118 (24): 2563–2570.

36. Wise S. G., Byrom M. J., Waterhouse A., Bannon P. G., Ng M. K. C., Weiss A. S. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomaterialia. 2011; 7 (1): 295–303.

37. McClure M. J., Sell S. A., Simpson D. G., Walpoth B. H., Bowlin G. L. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomaterialia. 2010; 6 (7): 2422–2433.

38. Lee S. J., Liu J., Oh S. H., Soker S., Atala A., Yoo J. J. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008; 29 (19): 2891–2898.

39. Tillman B. W., Yazdani S. K., Lee S. J., Geary R. L., Atala A., Yoo J. J. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009; 30 (4): 583–588.

40. Yokota T., Ichikawa H., Matsumiya G. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. Journal of Thoracic and Cardiovascular Surgery. 2008; 136 (4): 900–907.

41. He W., Ma Z., Teo W. E. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. Journal of Biomedical Materials Research A. 2009; 90 (1): 205–216.

42. Sachlos E., Czernuszka J. T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater. 2003; 5: 29–39.

43. Li W.-J., Laurencin C. T., Caterson E. J., Tuan R. S., Ko F. K. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002; 60 (4): 613–621.

44. Zhang Y., Ouyang H., Lim C. T., Ramakrishna S., Huang Z. M. Electrospinning of gelatin fibers and gelatin/ PCL composite fibrous scaffolds. J. Biomed. Mater. Res. Part B–Appl Biomater. 2005; 72 (1): 156–165.

45. Shabani I., Haddadi-Asl V., Seyedjafari E., Babaeijandaghi F., Soleimani M. Improved infiltration of stem cells on electrospun nanofibers. Biochem. Biophys. Res. Commun. 2009; 382 (1): 129–133.

46. Zhang Y. Z., Su B., Venugopal J., Ramakrishna S., Lim C. T. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int l J. Nanomed. 2007; 2 (4): 623–638.

47. Василец В. Н., Казбанов И. В., Недосеев С. Л., Ни­стратов В. М., Шварцкопф П. В. Физические методы создания и модифицирования биополимерных матриксов. Вестник трансплантологии и искусственных органов. 2009; XI (2): 43–46. VasiletsV.N., Kazbanov I.V., Nedoseev S. L., Nistratov V. M., Shvartskopf P. V. Fizicheskie metody sozdaniya i modifitsirovaniya biopolimernykh matriksov. Vestnik transplantologii i iskusstvennykh organov. 2009; XI (2): 43-46. [In Russ].

48. Stankus J. J., Guan J. J., Fujimoto K., Wagner W. R. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. 2006; 27 (5): 735–744.

49. Suh S. W., Shin J. Y., Kim J., Kim J., Beak C. H., Kim D. I. et al. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. Asaio J. 2002; 48 (5): 460–464.

50. Lee Y. H., Lee J. H., An I. G., Kim C., Lee D. S., Lee Y. K. et al. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005; 26 (16): 3165–3172.

51. Nam J., Huang Y., Agarwal S., Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007; 13 (9): 2249– 2257.

52. Kim T. G., Chung H. J., Park T. G. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008; 4 (6): 1611–1619.

53. Ekaputra A. K., Prestwich G. D., Cool S. M., Hutmacher D. W. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008; 9: 2097–2103.

54. Zhu X., Cui W., Li X., Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008; 9: 1795–1801.

55. Simonet M., Schneider O. D., Neuenschwander P., Stark W. J. Ultraporous 3D polymer meshes by lowtemperature electrospinning: use of ice crystals as a removable void template. Polym. Eng. Sci. 2007; 47 (12): 2020–2026.

56. Leong M. F., Rasheed M. Z., Lim T. C., Chian K. S. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J. Biomed. Mater. Res. A. 2009; 91 (1): 231–240. doi: 10.1002/jbm.a.32208.

57. Smit E., Buttner U., Sanderson R. D. Continuous yarns from electrospun fibers. Polymer. 2005; 46 (8): 2419–2423.

58. Ki C. S., Kim J. W., Hyun J. H., Lee K. H., Hattori M., Rah D. K. et al. Electrospun three-dimensional silk fibroin nanofibrous scaffold. J. Appl. Polym. Sci. 2007; 106 (6): 3922–3928.

59. Yokoyama Y., Hattori S., Yoshikawa C., Yasuda Y., Koyama H., Takato T. et. al. Kobayashi H. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater. Lett. 2009; 63 (9–10): 754–756.

60. Huang H., Guo Z. X. Human dermis separation via ultrashort pulsed laser plasma-mediated ablation. J. Phys. DAppl. Phys. 2009; 42 (16). doi:10.1088/0022-3727/42/16/165204.

61. Choi H. W., Johnson J. K., Nam J., Farson D. F., Lannutti J. Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J. Laser. Appl. 2007; 19 (4): 225–231.

62. Lannuttia J., Renekerb D., Mac T., Tomaskod D., Farsone D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C-Biomimet Supramol Syst. 2007; 27 (3): 504–509.

63. Sundararaghavan H. G., Metter R. B., Burdick J. A. Electrospun fibrous scaffolds with multiscale and photopatterned porosity. Macromol Biosci. 2010. 10 (3): 265–270.

64. Yixiang D., Yong T., Liao S., Chan C. K., Ramakrishna S. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering. Tissue. Eng. Part A. 2008; 14 (8): 1321–1329.

65. Shin’oka T., Breuer C. Tissue-engineered blood vessels in pediatric cardiac surgery. Yale Journ. of Biol. and Medic. 2008; 81 (4): 161–166.

66. Cleary M. A., Geiger E., Grady C., Best C., Naito Y., Breuer C. Vascular tissue engineering: the next generation. Trends in Mol. Medic. 2012; 18 (7): 394–404.

67. Dean E. W., Udelsman B., Breuer C. K. Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease. Yale Journ. of Biol. and Mediс. 2012; 85 (2): 229–238.

68. Rathore A., Cleary M., Naito Y., Rocco K., Breuer C. Development of tissue engineered vascular grafts and application of nanomedicine. Wiley Interdisciplinary Reviews: Nanomed and Nanobiotechnol. 2012; 4 (3): 257–272.

69. Naito Y., Shinoka T., Duncan D. Vascular tissue engineering: towards the next generation vascular grafts. Adv. Drug. Deliver. Rev. 2011; 63 (4): 312–323.


Рецензия

Для цитирования:


Антонова Л.В., Матвеева В.Г., Барбараш Л.С. ИСПОЛЬЗОВАНИЕ МЕТОДА ЭЛЕКТРОСПИННИНГА В СОЗДАНИИ БИОДЕГРАДИРУЕМЫХ СОСУДИСТЫХ ГРАФТОВ МАЛОГО ДИАМЕТРА: ПРОБЛЕМЫ И РЕШЕНИЯ (ОБЗОР). Комплексные проблемы сердечно-сосудистых заболеваний. 2015;(3):12-22. https://doi.org/10.17802/2306-1278-2015-3-12-22

For citation:


Antonova L.V., Matveeva V.G., Barbarash L.S. ELECTROSPINNING AND BIODEGRADABLE SMALL-DIAMETER VASCULAR GRAFTS: PROBLEMS AND SOLUTIONS (REVIEW). Complex Issues of Cardiovascular Diseases. 2015;(3):12-22. (In Russ.) https://doi.org/10.17802/2306-1278-2015-3-12-22

Просмотров: 602


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)