INCREASED LEVELS OF PROINFLAMMATORY CYTOKINES IN BLOOD PLASMA IN PATIENTS WITH CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION
https://doi.org/10.17802/2306-1278-2023-12-4-29-42
Abstract
Highlights
IL-8 and MCP-1 have a significant role in the CTEPH pathogenesis, which indicates the importance of nonspecific immunity in the formation and progression of CTEPH. The coupling between cytokines and hemodynamic parameters, cardiac structural changes and plasma biochemical parameters were determined.
Abstract
Background. Chronic thromboembolic pulmonary hypertension (CTEPH) pathogenesis is complex and not fully understood. Particular attention to the microvascular damage genesis in CTEPH is given to aseptic inflammation, which in turn could be mediated through various molecular mechanisms. According to the conflicting and incomplete data on changes in the profile of factors controlling inflammation in CTEPH, research in this field would identify new therapeutic targets for the prevention and treatment of CTEPH.
Aim. To study the profile of plasma proinflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and evaluate the coupling of these cytokines with the main morphofunctional and laboratory values of the disease severity.
Methods. 34 patients with CTEPH were included in this study. To characterize the group, the following methods were used: echocardiographic examination, catheterization of the right cardiac chambers. Biomarkers of heart failure, systemic inflammation, as well as erythropoiesis and iron metabolism were assessed in all patients. The control group included 10 donors. To study the proinflammatory cytokine profile in plasma, interleukins (IL) 6, 8, 18, monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase 9 were determined using standard enzyme-linked immunosorbent assay (ELISA) kits.
Results. Hemodynamic and morphofunctional changes in the pulmonary circulation specific to pulmonary hypertension were determined with catheterization of the right cardiac chambers and echocardiography. During plasma proinflammatory cytokines analysis, a significant increase in the level of IL-8 (p = 0.030) and MCP-1 (p = 0.031) in CTEPH group compared to the control group was observed. No significant differences for other analyzed markers were found. In the elaboration of the correlation analysis, moderate inverse coupling between proinflammatory markers and hemodynamic parameters characterizing the CTEPH severity were revealed, as well as positive correlations with parameters of remodeling of the right cardiac chambers and iron metabolism.
Conclusion. The increased levels of IL-8 and MCP-1 in patients with CTEPH identified in the present study indicate a significant role of nonspecific immunity in the formation and progression of CTEPH. The coupling between cytokines and hemodynamic parameters, structural cardiac changes and plasma biochemical parameters were determined. Based on the obtained data, it is possible to develop new medicinal substances, targeting towards proinflammatory cytokines, their receptors and signaling pathways.
About the Authors
Andrei A. KarpovRussian Federation
PhD, Head of the Laboratory of Pulmonary Vascular Disease, Associate Professor at the Department of Pathology, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Maria A. Simakova
Russian Federation
PhD, MD, Head, Senior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Pavel M. Docshin
Russian Federation
Junior Research Fellow, Research Laboratory of Excessive Calcification Diseases, Research Centre of Unknown, Rare and Genetically Determined Diseases, World-Class Research Centre for Personalized Medicine, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Yuliya I. Zhilenkova
Russian Federation
PhD, MD, Associate Professor, Department of Laboratory Medicine, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Leonid A. Shilenko
Russian Federation
First-year Resident at the Department of Advanced Therapy, Laboratory Assistant at the Laboratory of Pulmonary Vascular Disease, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Competing Interests:
конфликт интересов отсутствует
Ekaterina A. Zolotova
Russian Federation
MD, Junior Researcher, Research Group of Cardio-Oncology, World-Class Research Centre for Personalized Medicine, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Irina A. Zelinskaya
Russian Federation
Researcher in Bioprosthetics and Cardioprotection SRL, Assistant at the Pathological Physiology Department, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Zhanna I. Ionova
Russian Federation
PhD, Assistant at the Department of Advanced Therapy with the course of Endocrinology and Cardiology with the clinic named after. Academician G.F. Langa, Researcher at the Laboratory of Coronary Heart Disease, Research Institute of Cardiovascular Diseases, Clinical Research Center of the Federal State Budgetary Educational Institution of Higher Education “Academician I.P. Pavlov First St. Petersburg State Medical University” of the Ministry of Healthcare of Russian Federation, Saint-Petersburg, Russian Federation
Competing Interests:
конфликт интересов отсутствует
Michael M. Galagudza
Russian Federation
PhD, MD, Professor and Corresponding Member of the Russian Academy of Science, Director of the Institute of Experimental Medicine, Head of the Department of Pathology, Institute of Medical Education, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
Olga M. Moiseeva
Russian Federation
PhD, MD, Professor, Director of the Institute of Heart and Vessels, Head and Leading Researcher at the Department of Non-Coronary Heart Diseases, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
References
1. Konstantinides S.V., Meyer G. The 2019 ESC Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism. Eur Heart J. 2019; 40(42):3453-3455. doi:10.1093/eurheartj/ehz726
2. Moser K.M., Bloor C.M. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest. 1993; 103(3):685-692. doi:10.1378/chest.103.3.685
3. Simonneau G., Torbicki A., Dorfmüller P., Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017; 26(143):160112. doi:10.1183/16000617.0112-2016
4. Pietra G.G., Capron F., Stewart S., Leone O., Humbert M., Robbins I.M., Reid L.M., Tuder R.M. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol. 2004; 43(12 Suppl S):25S-32S. doi: 10.1016/j.jacc.2004.02.033
5. Lang I.M., Dorfmüller P., Vonk Noordegraaf A. The Pathobiology of Chronic Thromboembolic Pulmonary Hypertension. Ann Am Thorac Soc. 2016; 13 Suppl 3:S215-S221. doi: 10.1513/AnnalsATS.201509-620AS
6. Otani N., Watanabe R., Tomoe T., Toyoda S., Yasu T., Nakamoto T. Pathophysiology and Treatment of Chronic Thromboembolic Pulmonary Hypertension. Int J Mol Sci. 2023; 24(4):3979. doi: 10.3390/ijms24043979
7. Simonneau G., Dorfmüller P., Guignabert C., Mercier O., Humbert M. Chronic thromboembolic pulmonary hypertension: the magic of pathophysiology. Ann Cardiothorac Surg. 2022; 11(2):106-119. doi: 10.21037/acs-2021-pte-10
8. Vrigkou E., Tsantes A., Konstantonis D., Rapti E., Maratou E., Pappas A., Halvatsiotis P., Tsangaris I. Platelet, Fibrinolytic and Other Coagulation Abnormalities in Newly-Diagnosed Patients with Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel). 2022; 12(5):1238. doi: 10.3390/diagnostics12051238
9. Yan L., Li X., Liu Z., Zhao Z., Luo Q., Zhao Q., Jin Q., Yu X., Zhang Y. Research progress on the pathogenesis of CTEPH. Heart Fail Rev. 2019; 24(6):1031-1040. doi: 10.1007/s10741-019-09802-4
10. Quarck R., Wynants M., Verbeken E., Meyns B., Delcroix M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015; 46(2):431-443. doi: 10.1183/09031936.00009914
11. Koudstaal T., Boomars K.A., Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective. J Clin Med. 2020; 9(2):561. doi: 10.3390/jcm9020561
12. Zabini D., Heinemann A., Foris V., Nagaraj C., Nierlich P., Bálint Z., Kwapiszewska G., Lang I.M., Klepetko W., Olschewski H., Olschewski A. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2014; 44(4):951-962. doi: 10.1183/09031936.00145013
13. Koudstaal T., van Uden D., van Hulst J.A.C., Heukels P., Bergen I.M., Geenen L.W., Baggen V.J.M., van den Bosch A.E., van den Toorn L.M., Chandoesing P.P., Kool M., Boersma E., Hendriks R.W., Boomars K.A. Plasma markers in pulmonary hypertension subgroups correlate with patient survival. Respir Res. 2021; 22(1):137. doi: 10.1186/s12931-021-01716-w
14. Reesink H.J., Meijer R.C., Lutter R., Boomsma F., Jansen H.M., Kloek J.J., Bresser P. Hemodynamic and clinical correlates of endothelin-1 in chronic thromboembolic pulmonary hypertension. Circ J. 2006; 70(8):1058-1063. doi: 10.1253/circj.70.1058
15. Yang M., Deng C., Wu D., Zhong Z., Lv X., Huang Z., Lian N., Liu K., Zhang Q. The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 2016; 42(1):38-45. doi: 10.1007/s11239-015-1323-2
16. Avdeev S.N., Barbarash O.L., Bautin A.E., Volkov A.V., Veselova T.N., Galyavich A.S., Goncharova N.S., Gorbachevsky S.V., Danilov N.M., Eremenko A.A., Martynyuk T.V., Moiseeva O.M., Saidova M.A., Sergienko V.B., Simakova M.A., Stukalova O.V., Chazova I.E., Chernyavsky A.M., Shalaev S.V., Shmalts A.A., Tsareva N.A. 2020 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Russian Journal of Cardiology. 2021; 26(12):4683. (In Russ.) doi:10.15829/1560-4071-2021-4683
17. Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K., Schiller N.B. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010; 23(7):685-788. doi: 10.1016/j.echo.2010.05.010
18. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166(1):111-117. doi: 10.1164/ajrccm.166.1.at1102
19. White C.A., Akbari A., Doucette S., Fergusson D., Knoll G.A. Estimating glomerular filtration rate in kidney transplantation: is the new chronic kidney disease epidemiology collaboration equation any better? Clin Chem. 2010; 56(3):474-477. doi: 10.1373/clinchem.2009.135111
20. Humbert M., Kovacs G., Hoeper M.M., Badagliacca R., Berger R.M.F., Brida M., Carlsen J., Coats A.J.S., Escribano-Subias P., Ferrari P., Ferreira D.S., Ghofrani H.A., Giannakoulas G., Kiely D.G., Mayer E., Meszaros G., Nagavci B., Olsson K.M., Pepke-Zaba J., Quint J.K., Rådegran G., Simonneau G., Sitbon O., Tonia T., Toshner M., Vachiery J.L., Vonk Noordegraaf A., Delcroix M., Rosenkranz S.; ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38):3618-3731. doi: 10.1093/eurheartj/ehac237
21. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003; 284(4):L566-L577. doi: 10.1152/ajplung.00233.2002
22. Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021; 101(Pt B):107598. doi: 10.1016/j.intimp.2021.107598
23. Kimura H., Okada O., Tanabe N., Tanaka Y., Terai M., Takiguchi Y., Masuda M., Nakajima N., Hiroshima K., Inadera H., Matsushima K., Kuriyama T. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2001; 164(2):319-324. doi: 10.1164/ajrccm.164.2.2006154
24. Smolders V.F.E.D., Lodder K., Rodríguez C., Tura-Ceide O., Barberà J.A., Jukema J.W., Quax P.H.A., Goumans M.J., Kurakula K. The Inflammatory Profile of CTEPH-Derived Endothelial Cells Is a Possible Driver of Disease Progression. Cells. 2021; 10(4):737. doi: 10.3390/cells10040737
25. Xiao L., Liu Y., Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014; 306(3):H317-H325. doi: 10.1152/ajpheart.00182.2013
26. Wu D., Chen Y., Wang W., Li H., Yang M., Ding H., Lv X., Lian N., Zhao J., Deng C. The role of inflammation in a rat model of chronic thromboembolic pulmonary hypertension induced by carrageenan. Ann Transl Med. 2020; 8(7):492. doi: 10.21037/atm.2020.02.86
27. Åberg M., Björklund E., Wikström G., Christersson C. Platelet-leukocyte aggregate formation and inflammation in patients with pulmonary arterial hypertension and CTEPH. Platelets. 2022; 33(8):1199-1207. doi: 10.1080/09537104.2022.2087867
28. Magoń W., Stępniewski J., Waligóra M., Jonas K., Przybylski R., Podolec P., Kopeć G. Changes in Inflammatory Markers in Patients with Chronic Thromboembolic Pulmonary Hypertension Treated with Balloon Pulmonary Angioplasty. Cells. 2022; 11(9):1491. doi: 10.3390/cells11091491
29. Itoh T., Nagaya N., Ishibashi-Ueda H., Kyotani S., Oya H., Sakamaki F., Kimura H., Nakanishi N. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology. 2006; 11(2):158-163. doi: 10.1111/j.1440-1843.2006.00821.x
30. Liu K., Zhang C., Chen B., Li M., Zhang P. Association between right atrial area measured by echocardiography and prognosis among pulmonary arterial hypertension: a systematic review and meta-analysis. BMJ Open. 2020; 10(9):e031316. doi: 10.1136/bmjopen-2019-031316
31. Zhang M., Zhang Y., Pang W., Zhai Z., Wang C. Circulating biomarkers in chronic thromboembolic pulmonary hypertension. Pulm Circ. 2019; 9(2):2045894019844480. doi: 10.1177/2045894019844480
32. Wynants M., Quarck R., Ronisz A., Alfaro-Moreno E., Van Raemdonck D., Meyns B., Delcroix M. Effects of C-reactive protein on human pulmonary vascular cells in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2012; 40(4):886-894. doi: 10.1183/09031936.00197511
33. Quarck R., Nawrot T., Meyns B., Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009; 53(14):1211-1218. doi: 10.1016/j.jacc.2008.12.038
34. Skoro-Sajer N., Gerges C., Gerges M., Panzenböck A., Jakowitsch J., Kurz A., Taghavi S., Sadushi-Kolici R., Campean I., Klepetko W., Celermajer D.S., Lang I.M. Usefulness of thrombosis and inflammation biomarkers in chronic thromboembolic pulmonary hypertension-sampling plasma and surgical specimens. J Heart Lung Transplant. 2018; 37(9):1067-1074. doi: 10.1016/j.healun.2018.04.003
35. Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010; 30:105-122. doi: 10.1146/annurev.nutr.012809.104804
36. Anand I.S., Gupta P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation. 2018; 138(1):80-98. doi: 10.1161/CIRCULATIONAHA.118.030099
37. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004; 113(9):1271-1276. doi: 10.1172/JCI20945
38. Lee P., Peng H., Gelbart T., Wang L., Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A. 2005; 102(6):1906-1910. doi: 10.1073/pnas.0409808102
39. Sow F.B., Florence W.C., Satoskar A.R., Schlesinger L.S., Zwilling B.S., Lafuse W.P. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol. 2007; 82(4):934-945. doi: 10.1189/jlb.0407216
40. Quatredeniers M., Mendes-Ferreira P., Santos-Ribeiro D., Nakhleh M.K., Ghigna M.R., Cohen-Kaminsky S., Perros F. Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells. 2021; 10(2):477. doi: 10.3390/cells10020477
41. Valenti L., Dongiovanni P., Motta B.M., Swinkels D.W., Bonara P., Rametta R., Burdick L., Frugoni C., Fracanzani A.L., Fargion S. Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler Thromb Vasc Biol. 2011; 31(3):683-690. doi: 10.1161/ATVBAHA.110.214858
Supplementary files
Review
For citations:
Karpov A.A., Simakova M.A., Docshin P.M., Zhilenkova Yu.I., Shilenko L.A., Zolotova E.A., Zelinskaya I.A., Ionova Zh.I., Galagudza M.M., Moiseeva O.M. INCREASED LEVELS OF PROINFLAMMATORY CYTOKINES IN BLOOD PLASMA IN PATIENTS WITH CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION. Complex Issues of Cardiovascular Diseases. 2023;12(4):29-42. (In Russ.) https://doi.org/10.17802/2306-1278-2023-12-4-29-42