Preview

Complex Issues of Cardiovascular Diseases

Advanced search

ISCHEMIC POSTCONDITIONING OF HEART. ANALYSIS OF EXPERIMENTAL AND CLINICAL DATA

https://doi.org/10.17802/2306-1278-2015-3-37-46

Abstract

Published data on the impact of the experimental atherosclerosis on the infarct-limiting effect of ischemic postconditioning (IPost) are controversial. The reviewed data indicate that aging eliminates or reduces the infarct-limiting effect of postconditioning but does not affect the antiarrhythmic effect of IPost. Most of the experimental data reported that streptozotocin-induced diabetes removes the infarct-limiting effect of IPost. Regarding the second type of diabetes, information is contradictory: some authors argue that this diabetes completely eliminates the cardioprotective effect of IPost, others say that it only weakens but does not eliminate the infarct-limiting effect of IPost. Postconditioning in rats with high blood pressure prevents the appearance of reperfusion contractile dysfunction of the heart and provides the infarct-limiting effect. Cardiac hypertrophy, post-infarction remodeling and dilated cardiomyopathy have no effect on the infarct-reducing and inotropic effect of postconditioning. The majority of publications indicates that IPost enhances the inotropic and cardioprotective effect of cardioplegia. Data on the effect of postconditioning on the tolerance of the human heart to ischemia/reperfusion are limited and do not allow to make an unambiguous conclusion about whether IPost prevents reperfusion myocardial injury in cardiac patients.

About the Authors

Leonid N. Maslov
Federal State Budgetary Scientific Research Institute for Cardiology
Russian Federation
111A, Kievskaya st., Tomsk, 634012


I. G. Khaliulin
University of Bristol
United Kingdom
Bristol


References

1. Zhao Z. Q., Corvera J. S., Halkos M. E., Kerendi F., Wang N. P., Guyton R. A. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol. 2003; 285 (2): H579–588.

2. Simes R. J., O’Connell R. L., Aylward P. E., Varshavsky S., Diaz R., Wilcox R. G. et al. HERO-2 Investigators. Unexplained international differences in clinical outcomes after acute myocardial infarction and fibrinolytic therapy: lessons from the Hirulog and Early Reperfusion or Occlusion (HERO)-2 trial. Am. Heart J. 2010; 159 (6): 988–997.

3. Antman E. M., Morrow D. A., McCabe C. H., Murphy S. A., Ruda M., Sadowski Z. et al. ExTRACT-TIMI 25 Investigators. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N. Engl. J. Med. 2006; 354 (14): 1477–1488.

4. Soejima H., Ogawa H., Sakamoto T., Miyamoto S., Kajiwara I., Kojima S. et al. Increased serum matrix metalloproteinase-1 concentration predicts advanced left ventricular remodeling in patients with acute myocardial infarction. Circ. J. 2003, 67 (4): 301–304.

5. Iliodromitis E. K., Zoga A., Vrettou A., Andreadou I., Paraskevaidis I. A., Kaklamanis L. et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis. 2006; 188 (2): 356–362.

6. Iliodromitis E. K., Andreadou I., Prokovas E., Zoga A., Farmakis D., Fotopoulou T. et al. Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: possible role of oxidative/nitrosative stress attenuation. Basic. Res. Cardiol. 2010; 105 (2): 193–203.

7. Donato M., D’Annunzio V., Berg G., Gonzalez G., Schreier L., Morales C. et al. Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+ ATP channels in both normal and hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 2007; 49 (5): 287–292.

8. Zhao J. L., Yang Y. J., You S. J., Cui C. J., Gao R. L. Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc Res. 2007; 73 (2): 137–142.

9. Heusch G., Skyschally A., Schulz R. The in-situ pig heart with regional ischemia/reperfusion – Ready for translation. J. mol. Cell. Cardiol. 2011; 50 (6): 951–963.

10. Huang C., Li R., Zeng Q., Ding Y., Zou Y., Mao X. et al. Effect of minocycline postconditioning and ischemic postconditioning on myocardial ischemia-reperfusion injury in atherosclerosis rabbits. J. Huazhong Univ. Sci. Technology Med. Sci. 2012; 32 (4): 524–529.

11. Li X., Zhao H., Wu Y., Zhang S., Zhao X., Zhang Y. et al. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim. Biophys. Sin. (Shanghai). 2014; 46 (2): 112–118.

12. Wu N., Zhang X., Guan Y., Shu W., Jia P., Jia D. Hypercholesterolemia abrogates the cardioprotection of ischemic postconditioning in isolated rat heart: roles of glycogen synthase kinase-3β and the mitochondrial permeability transition pore. Cell. Biochem. Biophys. 2014; 69 (1): 123–130.

13. Przyklenk K., Maynard M., Darling C. E., Whittaker P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J. Am. Coll. Cardiol. 2008; 51 (14): 1393–1398.

14. Boengler K., Buechert A., Heinen Y., Roeskes C., Hilfiker-Kleiner D., Heusch G. et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ. Res. 2008; 102 (1): 131–135.

15. Vessey D. A., Kelley M., Li L., Huang Y. Sphingosine protects aging hearts from ischemia/reperfusion injury: Superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid. Med. Cell. Longev. 2009; 2 (3): 146–151.

16. Somers S. J., Lacerda L., Opie L., Lecour S. Age, genetic characteristics and number of cycles are critical factors to consider for successful protection of the murine heart with postconditioning. Physiol. Res. 2011; 60 (6): 971–974.

17. Dow J., Bhandari A., Kloner R. A. Ischemic postconditioning’s benefit on reperfusion ventricular arrhythmias is maintained in the senescent heart. J. Cardiovasc. Pharmacol. Ther. 2008; 13 (2): 141–148.

18. Ostadal B., Kolar F. Cardiac Ischemia: From Injury to Protection. Boston, Dordrecht, London: Kluwer. Academic. Publishers. 1999, 173.

19. Goodman M. D., Koch S. E., Fuller-Bicer G. A., Butler K. L. Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am. J. Physiol. Heart. Circ. Physiol. 2008; 295 (4): H1649–1656.

20. HausenloyD. J., TsangA., YellonD. M. Postconditioning does not protect the diabetic heart. J. Mol. Cell. Cardiol. 2006; 40 (6): 958.

21. Przyklenk K., Maynard M., Greiner D. L., Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid. Redox. Signal. 2011; 14 (5): 781–790.

22. Darling C. E., Jiang R., Maynard M., Whittaker P., Vinten-Johansen J., Przyklenk K. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am. J. Physiol. Heart. Circ. Physiol. 2005; 289 (4): H1618–1626.

23. Ren J. Y., Song J. X., Lu M. Y., Chen H. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul. Pept. 2011; 169 (1–3): 49–57.

24. Fan Y., Yang S., Zhang X., Cao Y., Huang Y. Comparison of cardioprotective efficacy resulting from a combination of atorvastatin and ischaemic post-conditioning in diabetic and non-diabetic rats. Clin. Exp. Pharmacol. Physiol. 2012; 39 (11): 938–943.

25. Najafi M., Farajnia S., Mohammadi M., Badalzadeh R., Ahmadi Asl N., Baradaran B. et al. Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J. Diabetes Metab. Disord. 2014; 13 (1): 106.

26. Lacerda L., Opie L. H., Lecour S. Influence of tumour necrosis factor alpha on the outcome of ischaemic postconditioning in the presence of obesity and diabetes. Exp. Diabetes Res. 2012; 2012: 502–654.

27. Oosterlinck W., Dresselaers T., Geldhof V., Nevelsteen I., Janssens S., Himmelreich U. et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J. Thorac. Cardiovasc. Surg. 2013; 145 (6): 1595–1602.

28. Zhu M., Feng J., Lucchinetti E., Fischer G., Xu L., Pedrazzini T. et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc. Res. 2006; 72 (1): 152–162.

29. Fantinelli J. C., Mosca S. M. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR). Mol. Cell. Biochem. 2007; 296 (1–2): 45–51.

30. Penna C., Tullio F., Moro F., Folino A., Merlino A., Pagliaro P. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic. Res. Cardiol. 2010; 105 (2): 181–192.

31. Gonzalez Arbeláez L. F., Pérez Núñez I. A., Mosca S. M. Gsk-3β inhibitors mimic the cardioprotection mediated by ischemic pre- and postconditioning in hypertensive rats. Biomed. Res. Int. 2013; 2013: 317–456.

32. Maslov L. N., Gorbunov A. S., Lishmanov Y. B. Cardioprotective effect of ischemic postconditioning on the model of isolated heart. Bull. Exp. Biol. Med. 2012; 153 (3): 313–314.

33. Li X. M., Ma Y. T., Yang Y. N., Zhang J. F., Chen B. D., Liu F. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice. Zhonghua Yi Xue Za Zhi. 2009; 89 (12): 846–850.

34. Hernandez-Resendiz S., Roldán F. J., Correa F., Martínez-Abundis E., Osorio-Valencia G., Ruíz-de-Jesús O. et al. Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J. Card. Fail. 2013; 19 (2): 135–146.

35. Ferrera R., Bopassa J. C., Angoulvant D., Ovize M. Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mitochondrial permeability transition pore. J. Heart. Lung. Transplant. 2007; 26 (6): 604–609.

36. Lauzier B., Sicard P., Bouchot O., Delemasure S., Menetrier F., Moreau D. et al. After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning. Transplantation. 2007; 84 (11): 1474–1482.

37. Shinohara G., Morita K., Nagahori R., Koh Y., Kinouchi K., Abe T. et al. Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2011; 142 (4): 926–932.

38. Maruyama Y., Chambers D. J. Ischaemic postconditioning: does cardioplegia influence protection? Eur. J. Cardiothorac. Surg. 2012; 42 (3): 530–539.

39. Penna C., Tullio F., Merlino A., Moro F., Raimondo S., Rastaldo R. et al. Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol. 2009; 104 (4): 390–402.

40. Sivaraman V., Mudalagiri N. R., Di Salvo C., Kolvekar S., Hayward M., Yap J. et al. Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic. Res. Cardiol. 2007; 102 (5): 453–459.

41. Roleder T., Gołba K. S., Kunecki M., Malinowski M., Biernat J., Smolka G. et al. The co-application of hypoxic preconditioning and postconditioning abolishes their own protective effect on systolic function in human myocardium. Cardiol. J. 2013; 20 (5): 472–477.

42. Zhao W. S., Xu L., Wang L. F., Zhang L., Zhang Z.Y., Liu Y. et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis. 2009; 14 (10): 1204–1211.

43. Ярилин А. А. Апоптоз: природа феномена и его роль в норме и при патологии. Актуальные проблемы патофизиологии: избранные лекции. Под ред. Б. Б. Мороза. М.:

44. Медицина; 2001; 15–56. Yarilin A. A. Apoptosis: the nature of the phenomenon and its role in health and disease. In.: Actual problems of pathophysiology: Selected lectures. Ed. B. B. Moroz. Moscow: Meditsina; 2001; 15–56. [In Russ].

45. Nagata S., Golstein P. The Fas death factor. Science. 1995; 267 (5203): 1449–1456.

46. Musiał K., Zwolińska D. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis. 2011; 16 (7): 559–653.

47. Fan Q., Yang X. C., Liu Y., Wang L. F., Liu S. H., Ge Y. G. et al. Postconditioning attenuates myocardial injury by reducing nitro-oxidative stress in vivo in rats and in humans. Clin. Sci. (Lond). 2010; 120 (6): 251–261.

48. Casos K., Perez M., Blasco-Lucas A., Gracia J., Permanyer E., Sureda C. et al. Is ischemic postconditioning really effective in protecting the human myocardium? The role of the protocol applied and of clinical conditions. Cardiovasc. Res. 2014; 103 Suppl 1: P421.


Review

For citations:


Maslov L.N., Khaliulin I.G. ISCHEMIC POSTCONDITIONING OF HEART. ANALYSIS OF EXPERIMENTAL AND CLINICAL DATA. Complex Issues of Cardiovascular Diseases. 2015;(3):37-46. (In Russ.) https://doi.org/10.17802/2306-1278-2015-3-37-46

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)