Preview

Complex Issues of Cardiovascular Diseases

Advanced search

COMPARATIVE ANALYSIS OF PULMONARY ARTERY CONDUITS IN CHILDREN

https://doi.org/10.17802/2306-1278-2024-13-4-13-25-34

Abstract

Highlights

The review presents the analysis of long-term outcomes of implantation of the most common types of conduits in children. Predictors of the development of dysfunction and infective endocarditis are presented.

 

Aim. To analyze the function of the available types of conduits in pediatric group of patients who underwent right ventricular outflow tract (RVOT) reconstruction.

Methods. The retrospective study included patients between 0 and 18 years old who underwent RVOT reconstruction using conduits between 2000 and 2017. Clinical records and imaging data were analyzed.

Results. A total of 400 patients underwent implantation of 495 conduits including glutaraldehyde (GA)-treated bovine jugular vein (contegra) (n = 181); GA-treated xenopericardial conduit (BioLAB) (n = 84); diepoxyde (DE)-treated xenopericardial conduit with porcine aortic root (AB-composite) (n = 65); DE-treated xenopericardial conduit (Pilon) (n = 32) and cryopreserved pulmonary homograft (n = 135). Primary implantation was made in 383 cases (77.3%) and conduit reimplantation was made in 112 cases (22.5%). Median follow-up was 79.9 (42.6; 110.7) months. Redo surgery with conduit replacement was made in 41 (8.5%) cases, of these, 6 (2.1%) conduits were replaced due to thrombosis, endocarditis was diagnosed in 14 patients (4.8%), there were no statistical differences between the groups. Younger age was associated with high risk of early dysfunction (OR 0.97; 95% CI 0.96–0.99, p = 0.03). Multivariate analysis revealed that the type of conduit was not a risk factor (OR 0,86; 95% CI 0,64–1,15; p = 0,64). Severe calcification was the main predictor of conduit-associated mortality (OR 0.02; 95% CI 0.002–0.34; p = 0.005).

Conclusion. Incidence of reintervention due to conduit dysfunction is still high in pediatric group and is not associated with type of conduit. All types of available conduits showed comparable rates of dysfunction. Risk of developing conduit-associated infective endocarditis also does not depend on the type of implanted graft.

About the Authors

Yuriy Yu. Kulyabin
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Cardiovascular Surgeon at the Cardiac Surgery Department of Congenital Heart Defects, Researcher at the Center for New Surgical Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Nataliya R. Nichay
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University”
Russian Federation

PhD, Cardiovascular Surgeon at the Cardiac Surgery Department of Congenital Heart Defects, Junior Researcher at the Center for New Surgical Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation; Assistant Professor at the Department of Cardiovascular Surgery, Faculty of Advanced Training and Professional Retraining of Doctors, Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University”, Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation, Novosibirsk, Russian Federation



Ilia A. Soynov
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Cardiovascular Surgeon at the Cardiac Surgery Department of Congenital Heart Defects, Senior Researcher at the Center for New Surgical Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Anna A. Dokuchaeva
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

Junior Researcher at the Laboratory of Experimental Surgery and Morphology, Institute of Experimental Biology and Medicine, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Irina Yu. Zhuravleva
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Professor, Head of the Bioprosthesis Laboratory at the Center for New Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Alexander V. Bogachev-Prokophiev
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Head of the Center for New Surgical Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



References

1. Homann M., Haehnel J.C., Mendler N., Paek S.U., Holper K., Meisner H., Lange R. Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 2000;17(6):624-30. doi: 10.1016/s1010-7940(00)00414-0.

2. Urso S., Rega F., Meuris B., Gewillig M., Eyskens B., Daenen W., Heying R., Meyns B. The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 2011;40(3):603-9. .doi: 10.1016/j.ejcts.2010.11.081.

3. Lee C., Park C.S., Lee C.H., Kwak J.G., Kim S.J., Shim W.S., Song J.Y., Choi E.Y., Lee S.Y. Durability of bioprosthetic valves in the pulmonary position: long-term follow-up of 181 implants in patients with congenital heart disease. J Thorac Cardiovasc Surg 2011;142(2):351-8. doi: 10.1016/j.jtcvs.2010.12.020.

4. Ong K., Boone R., Gao M., Carere R., Webb J., Kiess M., Grewal J. Right ventricle to pulmonary artery conduit reoperations in patients with tetralogy of fallot or pulmonary atresia associated with ventricular septal defect. Am J Cardiol. 2013;111(11):1638-43. doi: 10.1016/j.amjcard.2013.01.337.

5. Dave H., Mueggler O., Comber M., Enodien B., Nikolaou G., Bauersfeld U., Jenni R., Bettex D., Prêtre R. Risk factor analysis of 170 single-institutional contegra implantations in pulmonary position. Ann Thorac Surg. 2011;91(1):195-302. doi: 10.1016/j.athoracsur.2010.07.058.

6. Mery C.M., Guzmán-Pruneda F.A., De León L.E., Zhang W., Terwelp M.D., Bocchini C.E., Adachi I., Heinle J.S., McKenzie E.D., Fraser C.D.Jr. Risk factors for development of endocarditis and reintervention in patients undergoing right ventricle to pulmonary artery valved conduit placement. J Thorac Cardiovasc Surg. 2016;151(2):432-9, 441.e1-2. doi: 10.1016/j.jtcvs.2015.10.069.

7. Alfieris G.M., Swartz M.F., Lehoux J., Bove E.L. Long-term survival and freedom from reoperation after placement of a pulmonary xenograft valved conduit. Ann Thorac Surg. 2016;102(2):602-7. doi: 10.1016/j.athoracsur.2016.02.045.

8. Flameng W., Jashari R., De Visscher G., Mesure L., Meuris B. Calcification of allograft and stentless xenograft valves for right ventricular outflow tract reconstruction: an experimental study in adolescent sheep. J Thorac Cardiovasc Surg. 2011;141(6):1513-21. doi: 10.1016/j.jtcvs.2010.08.082.

9. Soor G.S., Leong S.W., Butany J., Shapero J.L., Williams W.G. Pulmonary site bioprostheses: morphologic findings in 40 cases. Arch Pathol Lab Med. 2009;133(5):797-802. doi: 10.1043/1543-2165-133.5.797.

10. Piazza N., Onuma Y., de Jaegere P., Serruys P.W. Guidelines for reporting mortality and morbidity after cardiac valve interventions - need for a reappraisal? Ann Thorac Surg. 2009;87(2):357-8; discussion 359-60. doi: 10.1016/j.athoracsur.2008.11.054.

11. Warnes C.A., Williams R.G., Bashore T.M., Child J.S., Connolly H.M., Dearani J.A., Del Nido P., Fasules J.W., Graham T.P.Jr, Hijazi Z.M. et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008;118(23):2395-451. doi: 10.1161/CIRCULATIONAHA.108.190811.

12. Baumgartner H., Bonhoeffer P., De Groot N.M., de Haan F., Deanfield J.E., Galie N., Gatzoulis M.A., Gohlke-Baerwolf C., Kaemmerer H., Kilner P. et al.; Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC); Association for European Paediatric Cardiology (AEPC); ESC Committee for Practice Guidelines (CPG). ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31(23):2915-57. doi: 10.1093/eurheartj/ehq249.

13. Sarris G.E., Balmer C., Bonou P., Comas J.V., da Cruz E., Di Chiara L., Di Donato R.M., Fragata J., Jokinen T.E., Kirvassilis G., Lytrivi I., Milojevic M., Sharland G., Siepe M., Stein J., Büchel E.V., Vouhé P.R. Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Cardiol Young. 2017;27(3):530-69. DOI: 10.1017/S1047951117000014.

14. Romeo J.L.R., Mokhles M.M., van de Woestijne P., de Jong P., van den Bosch A., van Beynum I.M., Takkenberg J.J.M., Bogers A.J.J.C. Long-term clinical outcome and echocardiographic function of homografts in the right ventricular outflow tract†. Eur J Cardiothorac Surg. 2019;55:518-26. doi: 10.1093/ejcts/ezy265.

15. Moroi M.K., Bacha E.A., Kalfa D.M. The Ross procedure in children: a systematic review. Ann Cardiothorac Surg. 2021;10:420-32. doi: 10.21037/acs-2020-rp-23.

16. Huyan Y., Chang Y., Song J. Application of Homograft Valved Conduit in Cardiac Surgery. Front Cardiovasc Med. 2021;8:740871. doi: 10.3389/fcvm.2021.740871.

17. Sandica E., Boethig D., Blanz U., Goerg R., Haas N.A., Laser K.T., Kececioglu D., Bertram H., Sarikouch S., Westhoff-Bleck M., Beerbaum P., Horke A. Bovine jugular veins versus homografts in the pulmonary position: an analysis across two centers and 711 patients-conventional comparisons and time status graphs as a new approach. Thorac Cardiovasc Surg. 2016;64(1):25-35. doi: 10.1055/s-0035-1554962.

18. Holmes A.A., Co S., Human D.G., Leblanc J.G., Campbell A.I. The Contegra conduit: Late outcomes in right ventricular outflow tract reconstruction. Ann Pediatr Cardiol. 2012;5(1):27-33. doi: 10.4103/0974-2069.93706.

19. Zhuravleva I.Y., Nichay N.R., Kulyabin Y.Y., Timchenko T.P., Korobeinikov A.A., Polienko Y.F., Shatskaya S.S., Kuznetsova E.V., Voitov A.V., Bogachev-Prokophiev A.V., Karaskov A.M. In search of the best xenogeneic material for a paediatric conduit: an experimental study. Interact Cardiovasc Thorac Surg. 2018;26(5):738-44. doi: 10.1093/icvts/ivx445.

20. Schoenhoff F.S., Loup O., Gahl B., Banz Y., Pavlovic M., Pfammatter J.P., Carrel T.P., Kadner A. The Contegra bovine jugular vein graft versus the Shelhigh pulmonic porcine graft for reconstruction of the right ventricular outflow tract: a comparative study. J Thorac Cardiovasc Surg. 2011;141(3):654-61. doi: 10.1016/j.jtcvs.2010.06.068.

21. Meyns B., Van Garsse L., Boshoff D., Eyskens B., Mertens L., Gewillig M., Fieuws S., Verbeken E., Daenen W. The Contegra conduit in the right ventricular outflow tract induces supravalvular stenosis. J Thorac Cardiovasc Surg. 2004;128(6):834-40. doi: 10.1016/j.jtcvs.2004.08.015.

22. Zhuravleva, I., Nichai, N., Dokuchaeva, A., Soinov, I., Ivantsov, S., Keil, I., Omelchenko, A., Gorbatykh, Y., & Gorbatykh, A. (2016). Clinical morphological analysis of Contegra dysfunction in infants. Patologiya Krovoobrashcheniya I Kardiokhirurgiya, 20(1), 56–61. doi:10.21688/1681-3472-2016-1-56-61 (In Russian)

23. Zhuravleva I.Yu., Karpova E.V., Kuznetsova E.V., Yunoshev A.S., Korobeynikov A.A., Timchenko T.P., Nichay N.R., Soynov I.A., Gorbatykh A.V. Valve-containing xenovenous conduit: terra incognita или tabula rasa? Siberian Scientific Medical Journal. 2016;36(2):90-101. (In Russian)


Supplementary files

Review

For citations:


Kulyabin Yu.Yu., Nichay N.R., Soynov I.A., Dokuchaeva A.A., Zhuravleva I.Yu., Bogachev-Prokophiev A.V. COMPARATIVE ANALYSIS OF PULMONARY ARTERY CONDUITS IN CHILDREN. Complex Issues of Cardiovascular Diseases. 2024;13(4):25-34. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4-13-25-34

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)