AUTOMATED OPPORTUNISTIC CT-SCREENING OF ABDOMINAL AORTIC ANEURYSMS USING ARTIFICIAL INTELLIGENCE: PROSPECTS AND CHALLENGES (LITERATURE REVIEW)
https://doi.org/10.17802/2306-1278-2024-13-4-204-213
Abstract
Highlights
- Non-contrast computed tomography (CT) scan is a promising modality for opportunistic screening of abdominal aortic aneurysm (AAA).
- Automation of opportunistic screening of AAA according to CT data is a promising use of artificial intelligence (AI) technologies.
- The development of AI algorithms for opportunistic screening of AAA based on CT data is currently limited due to the high labor costs in preparing datasets for AI training and testing.
Annotation
Abdominal aortic aneurysm is a cardiovascular disease characterized by a latent progression and adverse prognosis. Timely diagnosis reduces surgical risks and postoperative complications. Diagnostic imaging methods used to detect and evaluate this disease, particularly in targeted and opportunistic screening, are reviewed. The prospects of automation using artificial intelligence technologies for opportunistic screening are explored, moreover, they have already proven to be effective tools for optimizing radiology reports in several fields. This review highlights, however, relatively poor development of artificial intelligence algorithms for opportunistic screening of abdominal aortic aneurysms on native non-contrast abdominal CT studies. Possible reasons for this phenomenon and potential ways of development of this subject area are investigated.
About the Authors
Maria R. KodenkoRussian Federation
Junior Researcher at the Department of Scientific Medical Research, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation; Postgraduate Student at the Department of Biomedical Technical Systems, Federal State Budgetary Educational Institution of Higher Education “Bauman Moscow State Technical University”, Moscow, Russian Federation
Anton V. Vladzimirskyy
Russian Federation
Deputy Director for Science, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
Olga V. Omelyanskaya
Russian Federation
Head of Department of Management for Directorate of Science, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
Maria M. Suchilova
Russian Federation
Junior Researcher at the Department of Scientific Medical Research, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
Ivan A. Blokhin
Russian Federation
Head of the Radiation Diagnostics Research Sector, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
Denis V. Gatin
Russian Federation
Junior Researcher at the Department of Scientific Medical Research, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
Roman V. Reshetnikov
Russian Federation
Head of the Department of Scientific Medical Research, State Budgetary Healthcare Institution of the Moscow city “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow”, Moscow, Russian Federation
References
1. ICD-10 Version: 2019. Available at: https://icd.who.int/browse10/2019/en (accessed 21.11.2022)
2. Ellis M., Powell J.T., Greenhalgh R.M. Limitations of ultrasonography in surveillance of small abdominal aortic aneurysms Br J Surg. 1991;78(5):614-6. doi: 10.1002/bjs.1800780529.
3. Klinicheskie rekomendacii «Anevrizmy brjushnoj aorty» Available at: https://angiolsurgery.org/library/recommendations/2022/aneurysm/ (accessed 23.11.2023) (In Russian)
4. Song P., He Y., Adeloye D., Zhu Y., Ye X., Yi Q., Rahimi K., Rudan I.; Global Health Epidemiology Research Group (GHERG). The Global and Regional Prevalence of Abdominal Aortic Aneurysms: A Systematic Review and Modeling Analysis. Ann Surg. 2023;277(6):912-919. doi: 10.1097/SLA.0000000000005716..
5. Jahangir E., Lipworth L., Edwards T.L., Kabagambe E.K., Mumma M.T., Mensah G.A., Fazio S., Blot W.J., Sampson U.K. Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. J Epidemiol Community Health. 2015;69(5):481-8. doi: 10.1136/jech-2014-204920.
6. Altobelli E., Rapacchietta L., Profeta V.F., Fagnano R. Risk Factors for Abdominal Aortic Aneurysm in Population-Based Studies: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2018;15(12):2805. doi: 10.3390/ijerph15122805.
7. Lederle F.A., Johnson G.R., Wilson S.E., Chute E.P., Hye R.J., Makaroun M.S., Barone G.W., Bandyk D., Moneta G.L., Makhoul R.G. The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch Intern Med. 2000;160(10):1425-30. doi: 10.1001/archinte.160.10.1425.
8. Takei H., Ishikawa S., Otaki A., Sakata K., Aizaki M., Sato Y., Suzuki M., Ishikita T., Iino Y., Yokoe T., Morishita Y. Screening for abdominal aortic aneurysm and occlusive peripheral vascular disease in Japanese residents. Surg Today. 1995;25(7):608-11. doi: 10.1007/BF00311434.
9. Sweeting M.J., Thompson S.G., Brown L.C., Powell J.T.; RESCAN collaborators. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg. 2012;99(5):655-65. doi: 10.1002/bjs.8707.
10. Anagnostakos J., Lal B. K. Abdominal aortic aneurysms. Prog Cardiovasc Dis. 2021 Mar-Apr;65:34-43. doi: 10.1016/j.pcad.2021.03.009.
11. Garrity B.M., Sugarman E., Pulley S. Abdominal aortic aneurysm rupture presenting with focal weakness and altered mental status: a case report. Int J Emerg Med. 2022; 15(1):28. doi: 10.1186/s12245-022-00433-5.
12. Reimerink J.J., van der Laan M.J., Koelemay M.J., Balm R., Legemate D.A. Systematic review and meta-analysis of population-based mortality from ruptured abdominal aortic aneurysm. Br J Surg. 2013;100(11):1405-13. doi: 10.1002/bjs.9235.
13. Hoornweg L.L., Storm-Versloot M.N., Ubbink D.T., Koelemay M.J., Legemate D.A., Balm R. Meta analysis on mortality of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008;35(5):558-70. doi: 10.1016/j.ejvs.2007.11.019.
14. Samorodskaya I.V. Screening in cardiology. Complex Issues of Cardiovascular Diseases. 2018;7(4):92-100. doi:10.17802/2306-1278-2018-7-4-92-100. (In Russian)
15. Shaw P.M., Loree J., Gibbons R.C. Abdominal Aortic Aneurysm. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available at: https://www.statpearls.com/nursepractitioner/ce/activity/93260/?specialty=APRN-Advanced%20Health%20Assessment (accessed 23.11.2024)
16. van Walraven C., Wong J., Morant K., Jennings A., Jetty P., Forster A.J. Incidence, follow-up, and outcomes of incidental abdominal aortic aneurysms. J Vasc Surg. 2010;52(2):282-9.e1-2. doi: 10.1016/j.jvs.2010.03.006.
17. Castro-Ferreira R., Vidoedo J., Peixoto J., Canedo A., Teixeira J., Leite-Moreira A., Sampaio S. Incidental abdominal aortic aneurysms are largely undocumented and unmonitored. Ann Vasc Surg. 2021;77:182-186. doi: 10.1016/j.avsg.2021.05.027.
18. Guirguis-Blake J.M., Beil T.L., Senger C.A., Coppola E.L. Primary Care Screening for Abdominal Aortic Aneurysm: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2019;322(22):2219-2238. doi: 10.1001/jama.2019.17021.
19. Manning B.J., Kristmundsson T., Sonesson B., Resch T. Abdominal aortic aneurysm diameter: a comparison of ultrasound measurements with those from standard and three-dimensional computed tomography reconstruction. J Vasc Surg. 2009;50(2):263-8. doi: 10.1016/j.jvs.2009.02.243.
20. Andreucci M., Solomon R., Tasanarong A. Side effects of radiographic contrast media: Pathogenesis, risk factors, and prevention. Biomed Res Int. 2014;2014:741018. doi: 10.1155/2014/741018.
21. Zha Y., Peng G., Li L., Yang C., Lu X., Peng Z. Quantitative Aortic Distensibility Measurement Using CT in Patients with Abdominal Aortic Aneurysm: Reproducibility and Clinical Relevance. Biomed Res Int. 2017;2017:5436927. doi: 10.1155/2017/5436927.
22. Lin E., Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403-8.doi: 10.1016/j.jcct.2009.07.003
23. Gordon J.R.S., Wahls T., Carlos R.C., Pipinos I.I., Rosenthal G.E., Cram P. Failure to recognize newly identified aortic dilations in a health care system with an advanced electronic medical record. Ann Intern Med. 2009;151(1):21-7, W5. doi: 10.7326/0003-4819-151-1-200907070-00005.
24. Claridge R., Arnold S., Morrison N., van Rij A.M. Measuring abdominal aortic diameters in routine abdominal computed tomography scans and implications for abdominal aortic aneurysm screening. J Vasc Surg. 2017;65(6):1637-1642. doi: 10.1016/j.jvs.2016.11.044.
25. Dashboard kak moshhnyj instrument dlja upravlencheskih reshenij. Avaliable at: https://telemedai.ru/press-centr/novosti/dashboard-kak-moshnyj-instrument-dlya-upravlencheskih-reshenij?ysclid=lp86vadx1w703586444 (accessed 21.11.2023) (In Russiafn)
26. Edinyj radiologicheskij informacionnyj servis. Avaliable at: https://telemedai.ru/proekty/edinyj-radiologicheskij-informacionnyj-servis_2020?ysclid=lp86zvv33a625269831 (accessed 21.11.2023) (In Russian)
27. Lee C.S., Nagy P.G., Weaver S.J., Newman-Toker D.E. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol. 2013;201(3):611-7. doi: 10.2214/AJR.12.10375.
28. Kim Y.W., Mansfield L.T. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am J Roentgenol. 2014;202(3):465-70. doi: 10.2214/AJR.13.11493.
29. Aiello M., Cavaliere C., D'Albore A., Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med. 2019;8(3):316. doi: 10.3390/jcm8030316.
30. Zakharova D.К., Nudnov N.V., Kodenko М.R., Reshetnikov R.V., Gonchar А.P. Hepatic Steatosis Detection by Computer Vision During Chest Low-Dose Computed Tomography in Lung Cancer Screening Program. Journal of radiology and nuclear medicine. 2023;104(1):40-46. doi:10.20862/0042-4676-2023-104-1-40-46. (In Russian)
31. Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, Arzamasov KM, Shulkin IM, Kozhikhina DD, Pestrenin LD. Double-reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization. Digital Diagnostics. 2023;4(2):93−104. doi:10.17816/DD321423 (In Russian)
32. Morozov S.P., Vladzymyrskyy A.V., Shulkin I.M., Ledikhova N.V., Arzamasov K.M., Andreychenko A.E., Logunova T.A., Omelyanskaya O.V., Gusev A.V. Feasibility of using artificial intelligence in radiation diagnostics. Medical doctor and information technology. 2022; 1: 12-29. (In Russian)
33. Kodenko M.R., Vasilev Y.A., Vladzymyrskyy A.V., Omelyanskaya O.V., Leonov D.V., Blokhin I.A., Novik V.P., Kulberg N.S., Samorodov A.V., Mokienko O.A., Reshetnikov R.V. Diagnostic Accuracy of AI for Opportunistic Screening of Abdominal Aortic Aneurysm in CT: A Systematic Review and Narrative Synthesis. Diagnostics (Basel). 2022;12(12):3197. doi: 10.3390/diagnostics12123197.
34. Maheswari J. P. Breaking the curse of small datasets in Machine Learning: Part 1 Available at: https://towardsdatascience.com/breaking-the-curse-of-small-datasets-in-machine-learning-part-1-36f28b0c044d (accessed 10.11.2023).
35. Vasil'ev Ju. A., Arzamasov K. M., Vladzimirskij A. V., Omeljanskaja O.V., Bobrovskaja T.M., Sharova D.E., Nikitin N.Ju., Kodenko M.R. Podgotovka nabora dannyh dlja obuchenija i testirovanija programmnogo obespechenija na osnove tehnologii iskusstvennogo intellekta : Uchebno-metodicheskoe posobie. Moskva :Nauchno-prakticheskij klinicheskij centr diagnostiki i telemedicinskih tehnologij Departamenta zdravoohranenija goroda Moskvy; 2023.. (In Russian)
36. Vasil'ev Ju. A., Turavilova E. V., Shul'kin I. M., Omeljanskaja O.V., Arzamasov K.M., Ahmetov R.N. i dr. pravoobladatel': Gosudarstvennoe bjudzhetnoe uchrezhdenie zdravoohranenija goroda Moskvy «Nauchno-prakticheskij klinicheskij centr diagnostiki i telemedicinskih tehnologij Departamenta zdravoohranenija goroda Moskvy». MosMedData: KT s priznakami anevrizmy brjushnogo otdela aorty. Svidetel'stvo o gosudarstvennoj registracii bazy dannyh № 2023621046 Rossijskaja Federacija. 30.03.2023. (In Russian)
37. Lareyre F., Adam C., Carrier M., Raffort J. Artificial intelligence and automatic segmentation of abdominal aortic aneurysm: Past, present, and future. J Vasc Surg. 2021;74(1):347-348. doi: 10.1016/j.jvs.2021.01.073.
38. Barnard R., Tan J., Roller B., Chiles C., Weaver A.A., Boutin R.D., Kritchevsky S.B., Lenchik L. Machine Learning for Automatic Paraspinous Muscle Area and Attenuation Measures on Low-Dose Chest CT Scans. Acad Radiol. 2019;26(12):1686-1694. doi: 10.1016/j.acra.2019.06.017.
39. Kodenko M.R., Makarova T.A. Preparation of abdominal computed tomography data set for patients with abdominal aortic aneurysm. Digital Diagnostics. 2023;4(1S):90-92. doi: 10.17816/DD430355 (In Russian)
40. Chandrashekar A.C., Handa A.H., Shivakumar N.S., Lapolla P.L., Grau V.G., Lee R.L. A deep learning approach to automate high-resolution blood vessel reconstruction on computerised tomography images with or without the use of contrast agents. European Heart Journal. 2020; 41(Suppl.2): ehaa946.0154. doi:10.1093/ehjci/ehaa946.01542.
41. Lu J.-T., Brooks R., Hahn S., Chen J., Buch V., Kotecha G., Andriole K.P., Ghoshhajra B., Pinto J., Vozila P., Michalski M., Tenenholtz N.A. DeepAAA: Clinically Applicable and Generalizable Detection of Abdominal Aortic Aneurysm Using Deep Learning. In: Shen, D., Liu T., Peters T.M. et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science. Springer: Cham. 2019;11765: 723–731. https://doi.org/10.1007/978-3-030-32245-8_802019
42. Bozkir Ö. F., Budak A., Karatas H., Ceylan M. Segmentation of the Aorta in CTA Images Using Deep Learning Methods. Preprint 2023. https://doi.org/10.21203/rs.3.rs-2559681/v1
43. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. G. Generative adversarial networks. Commun. ACM. 2020;63(11):139–144. doi:10.1145/3422622
44. Lucini F. The Real Deal About Synthetic Data. Available at: https://sloanreview.mit.edu/article/the-real-deal-about-synthetic-data/ (accessed 21.11.2023).
45. Zhao Q., Adeli E., Pohl K.M. Training confounder-free deep learning models for medical applications. Nat Commun. 2020;11(1):6010. doi: 10.1038/s41467-020-19784-9
46. Kodenko M.R., Kulberg N.S., Samorodov A.V. Analysis of high-density component of abdominal aorta contents at CT-angiography. Collection of abstracts of XXX International Conference "Mathematics. Computer. Education" – 2023. Available at: http://www.mce.su/rus/archive/abstracts/mce30/sect288919/doc417793 (accessed 30.03.2023) (In Russian)
47. Kodenko M. R., Vasilev Y. A., Kulberg N. S., Samorodov A. V., Vladzimirskyy A. V., Omelyanskaya O. V., Reshetnikov R. V. Contrast-agent-induced deterministic component of CT-density in the abdominal aorta during routine angiography: proof of concept study. arXiv preprint arXiv:2310.20243. Available at: https://doi.org/10.48550/arXiv.2310.20243 (accessed 10.11.2023)
Supplementary files
Review
For citations:
Kodenko M.R., Vladzimirskyy A.V., Omelyanskaya O.V., Suchilova M.M., Blokhin I.A., Gatin D.V., Reshetnikov R.V. AUTOMATED OPPORTUNISTIC CT-SCREENING OF ABDOMINAL AORTIC ANEURYSMS USING ARTIFICIAL INTELLIGENCE: PROSPECTS AND CHALLENGES (LITERATURE REVIEW). Complex Issues of Cardiovascular Diseases. 2024;13(4):204-213. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4-204-213