Preview

Complex Issues of Cardiovascular Diseases

Advanced search

COMPARATIVE IN VITRO TESTING OF BIODEGRADABLE VASCULAR GRAFTS FOR TISSUE ENGINEERING APPLICATIONS

https://doi.org/10.17802/2306-1278-2015-4-34-41

Abstract

We prepared polycaprolactone (PCL) and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PCL) 2 mm vascular grafts using electrospinning. The structure of the graft surface along with the physico-mechanical and viscoelastic properties were investigated by scanning electron microscopy, universal testing machine (n=20), and arterial pulsatile flow circuit (n=12), respectively. We also assessed hemocompatibility and thromboresistance of the inner graft surface (n=12). Cell adhesion and viability were investigated using EA.hy 926, an endothelial cell line that was cultured on the cultural plate, PCL, and PHBV/PCL scaffolds during 6 days.

PCL and PHBV/PCL grafts consisted of ≤ 4 μm diameter fibers which were randomly distributed and formed ≤ 40 μm diameter pores. The durability, elasticity, and stiffness of PCL grafts were 2,7-fold lower, 10,7-fold higher, and 2,9-fold higher, respectively, compared to autologous saphenous veins (р<0,001). However, the durability, elasticity, and stiffness of PHBV/PCL grafts were 1,9-fold higher, 1,8-fold lower, and 6,9-fold higher in comparison with PCL grafts (р<0,001). Viscoelastic properties of both PCL and PHBV/PCL grafts differed from native arteries (p<0,001) but were more similar to them then Dacron and ePTFE grafts. After the contact with blood, inner surface of PHBV/PCL grafts contained minimal amount of proteins and blood cells, and there were no signs of platelet activation. However, PCL grafts contained a high amount of proteins and induced platelet activation. After 6 days of culture, the number of EA.hy 926 cells was lower on PCL scaffolds compared to the PHBV/PCL scaffolds and cultural plate; the viability of the cells was similar.

About the Authors

Larisa V. ANTONOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


V. V. SEVOSTYANOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


A. M. SEIFALIAN
University College London
United Kingdom
London


V. G. MATVEEVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


E. A. VELIKANOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


E. A. SERGEEVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


T. V. GLUSHKOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


E. O. KRIVKINA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


M. V. NASONOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


D. K. SHISHKOVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


YU. A. KUDRYAVTSEVA
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


O. L. BARBARASH
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


L. S. BARBARASH
Federal State Budgetary Scientific Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002


References

1. Бокерия Л. А., Гудкова Р. Г. Сердечно-сосудистая хирургия 2013. Болезни и врожденные аномалии системы кровообращения. M.; 2014. Bokeriya L. A., Gudkova R. G. Serdechno-sosudistaya khirurgiya 2013. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya. M.; 2014.

2. Desai M., Seifalian A. M., Hamilton G. Role of prosthetic conduits in coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2011; 40 (2): 394–398.

3. Бокерия Л. А., Беришвили И. И., Солнышков Л. Э. и др. Повторные операции у больных ишемической болезнью сердца – современное состояние проблемы. Бюллетень НЦССХ им. Бакулева РАМН. 2009; 10(3): 5–27. Bokeriya L. A., Berishvili I. I., Solnyshkov L. E. i dr. Povtornye operatsii u bol’nykh ishemicheskoy bolezn’yu serdtsa – sovremennoe sostoyanie problemy. Byulleten’ NTsSSKh im. Bakuleva RAMN. 2009; 10(3): 5–27.

4. Hasan A., Memic A., Annabi N., Hossain M., Haul A., Dokmeci M. R. et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; (10): 11–25.

5. Catto V., Fare S., Freddi G., Tanzi M. C. Vascular tissue engineering: recent advances in small diameter blood vessel regeneration. ISRN Vasc. Med. 2014; Article ID 923030: 1–27. http://dx.doi.org/10.1155/2014/923030.

6. Patel H., Bonde M., Srinivasan G. Biodegradable Polymer Scaffold for Tissue Engineering. Trends Biomater. Artif. Organs. 2011; 25 (1): 20–29.

7. Seifalian F. M., Salacinski H. J., Tiwari A., Edwards A., Bowald S., Hamilton G. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomatererials. 2003; (24): 2549–2557.

8. ГОСТ Р ИСО 10993-4-2009. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 4. Исследование изделий, взаимодействующих с кровью. C. 16. GOST R ISO 10993-4-2009. Izdeliya meditsinskie. Otsenka biologicheskogo deystviya meditsinskikh izdeliy. Chast’ 4. Issledovanie izdeliy, vzaimodeystvuyushchikh s krov’yu. C. 16.

9. Шоно Н. И. Метод определения белка по Бредфорду: область применения, преимущества, недостатки. Лабораторное дело. 1989; (4): 4–7. Shono N. I. Metod opredeleniya belka po Bredfordu: oblast’ primeneniya, preimushchestva, nedostatki. Laboratornoe delo. 1989; (4): 4-7.

10. Tai N. R., Salacinski H. J., Edwards A., Hamilton G., Seifalian A. M. Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 2000; (87): 1516–1524.


Review

For citations:


ANTONOVA L.V., SEVOSTYANOVA V.V., SEIFALIAN A.M., MATVEEVA V.G., VELIKANOVA E.A., SERGEEVA E.A., GLUSHKOVA T.V., KRIVKINA E.O., NASONOVA M.V., SHISHKOVA D.K., KUDRYAVTSEVA Yu.A., BARBARASH O.L., BARBARASH L.S. COMPARATIVE IN VITRO TESTING OF BIODEGRADABLE VASCULAR GRAFTS FOR TISSUE ENGINEERING APPLICATIONS. Complex Issues of Cardiovascular Diseases. 2015;(4):34-41. (In Russ.) https://doi.org/10.17802/2306-1278-2015-4-34-41

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)