Preview

Complex Issues of Cardiovascular Diseases

Advanced search

RESULTS OF PRECLINICAL TESTS OF SMALL-DIAMETER TISSUE ENGINEERED VASCULAR GRAFTS ON THE PRIMATE MODEL

Abstract

Highlights

Following the development of an effective small-diameter tissue engineered vascular grafts, we have conducted preclinical tests of the new product on a primate model. 6 months after implantation, the patency of vascular grafts was 83.3%, there were no signs of aneurysm formation and pronounced inflammation. Remodeling of vascular grafts was accompanied by the formation of a neointima lined with endothelium and neoadventitia, whereas the integrity of the polymer frame remained high.

 

Annotation

Aim. To conduct preclinical tests of the small-diameter tissue engineered vascular grafts on a primate model with subsequent assessment of patency and remodeling.

Methods. We created vascular grafts using a polymer composition of polycaprolactone and polyurethane with proangiogenic factors by emulsion electrospinning. On the inner surface, we formed a hydrogel coating consisting of iloprost and heparin. The obtained grafts were implanted into the femoral artery of adult male baboons for 6 months. After 5 days, 1, 3 and 6 months of implantation we performed ultrasound examination to assess patency. Moreover, we performed stereomicroscopy, scanning immunofluorescence staining of explanted samples. Statistical data processing was carried out using the GraphPad Prism 8 software.

Results. The patency of vascular grafts after 6 months of implantation was 83.3%. The examinations of the samples confirmed the absence of aneurysms and stenoses during the entire follow-up period. Upon inspection, we noted that the explanted grafts were surrounded by a thin vascularized connective tissue capsule. 6 months after implantation, the polymer scaffolds of the grafts did not have pronounced bioresorption. We observed a neointima with a thickness of 192.9 (138.4; 258.1) microns, a neoadventitia with a thickness of 233.2 (188.1; 510.4) microns and a continuous endothelial monolayer on the lumen side in all patent grafts.

Conclusion. The grafts retained patency in 83.3% of cases 6 months after implantation into the femoral arteries of baboons. Moreover, all patent grafts showed the formation of neointima and neoadventitia with a functionally active endothelial monolayer. There were no signs of concomitant inflammation, calcification or aneurysms.

About the Authors

Evgenia A. Senokosova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Evgenia O. Krivkina
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Andrey V. Mironov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Junior Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute of Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Egor S. Sardin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at Laboratory of Anaesthesia and Intensive Care and Pathophysiology of Critical Illness, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute of Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Tatyana Yu. Sergeeva
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Ultrasound Diagnostics Specialist at the Department of Functional and Ultrasound Diagnostics, Federal State Budgetary Institution “Research Institute of Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Vera G. Matveeva
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher, Laboratory for Cell and Tissue Engineering, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Maryam Yu. Khanova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Junior Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Evgenia A. Torgunakova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory for Cell and Tissue Engineering, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Rinat A. Mukhamadiyarov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Larisa V. Antonova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Leading Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Pashneh-Tala S., MacNeil S., Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. Tissue Eng Part B Rev. 2016; 22(1):68-100. doi: 10.1089/ten.teb.2015.0100.

2. Moreno M.J., Ajji A., Mohebbi-Kalhori D., Rukhlova M., Hadjizadeh A., Bureau M.N. Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold. J Biomed Mater Res B Appl Biomater. 2011; 97(2):201-214. doi: 10.1002/jbm.b.31774.

3. Krivkina E.O., Antonova L.V. Results of long-term patency of small-diameter biodegradable vascular prostheses with atrombogenic drug coating of sheep model. Complex Issues of Cardiovascular Diseases. 2021;10(2):36–39. doi:10.17802/2306-1278-2021-10-2S- 36-39. (in Russian)

4. Lee K.S., Kayumov M., Emechebe G.A., Kim D.W., Cho H.J., Jeong Y.J., Lee D.W., Park J.K., Park C.H., Kim C.S., Obiweluozor F.O., Jeong I.S. A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Eng Regen Med. 2022; 19(3):537-551. doi:10.1007/s13770-021-00422-4.

5. Lin C.H., Hsia K., Ma H., Lee H., Lu J.H. In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci. 2018; 19(7):2101. doi:10.3390/ijms19072101.

6. van de Laar B.C., van Heusden H.C., Pasker-de Jong P.C., van Weel V. Omniflow II biosynthetic grafts versus expanded polytetrafluoroethylene grafts for infrainguinal bypass surgery. A single-center retrospective analysis. Vascular. 2022;30(4):749-758. doi:10.1177/17085381211029815.

7. Toong D.W.Y., Toh H.W., Ng J.C.K., Wong P.E.H., Leo H.L., Venkatraman S., Tan L.P., Ang H.Y., Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular Applications. Int J Mol Sci. 2020; 21(10):3444. doi:10.3390/ijms21103444.

8. Leal B.B.J., Wakabayashi N., Oyama K., Kamiya H., Braghirolli D.I., Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med. 2021; 7:592361. doi:10.3389/fcvm.2020.592361.

9. Sevostyanova V.V., Mironov A.V., Glushkova T.V., Burago A.Yu., Matveeva V.G., Antonova L.V., Kudryavtseva Yu.A., Seifalian A.M., Barbarash O.L., Barbarash L.S. Experimental study of polycaprolactone vascular graft for blood vessel regeneration. Siberian Journal of Clinical and Experimental Medicine. 2016; 31(1):53-57. doi:10.29001/2073-8552-2016-31-1-53-57. (In Russian)

10. Glushkova T.V., Sevostyanova V.V., Antonova L.V., Klyshnikov K.Yu., Ovcharenko E.A., Sergeeva E.A., Vasyukov G.Yu., Seifalian A.M., Barbarash L.S. Biomechanical remodeling of biodegradable small-diameter vascular grafts in situ. Russian Journal of Transplantology and Artificial Organs. 2016;18(2):99-109. doi:10.15825/1995-1191-2016-2-99-109. (In Russian)

11. Antonova L.V., Sevostyanova V.V., Kutikhin A.G., Velikanova Е.A., Matveeva V.G., Glushkova T.V., Mironov A.V., Krivkina E.O., Barbarash O.L., Barbarash L.S. Influence of bFGF, SDF-1α, or VEGF incorporated into tubular polymer scaffolds on the formation of small-diameter tissue-engineered blood vessel in vivo. Russian Journal of Transplantology and Artificial Organs. 2018;20(1):96-109. doi:10.15825/1995-1191-2018-1-96-109. (In Russian)

12. Antonova L., Kutikhin A., Sevostianova V., Lobov A., Repkin E., Krivkina E., Velikanova E., Mironov A., Mukhamadiyarov R., Senokosova E., Khanova M., Shishkova D., Markova V., Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel). 2022; 14(23):5149.

13. doi:10.3390/polym14235149.

14. Kudryavtseva Yu.A., Ovcharenko E.A., Klyshnikov K.Yu., Antonova L.V., Senokosova E.A., Ponasenko A.V., Barbarash O.L., Barbarash L.S. Biological prostheses for cardiovascular surgery – a half-century history and development prospects. Complex Issues of Cardiovascular Diseases. 2024; 13(1):196-210. doi:10.17802/2306-1278-2024-13-1-196-210. (In Russian.)

15. Senokosova E.A., Krivkina E.O., Akentyeva T.N., Glushkova T.V., Koshelev V.A., Khanova M.Yu., Antonova L.V. Tissue-engineered vascular graft: assessment of material quality and activity of anti-trombogenic coating. Complex Issues of Cardiovascular Diseases. 2024; 13(3): 193-201. doi:10.17802/2306-1278-2024-13-3-193-201. (In Russian)

16. Rickel A.P., Deng X., Engebretson D., Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021; 129:112373. doi:10.1016/j.msec.2021.112373.

17. Zhou S.Y., Li L., Xie E., Li M.X., Cao J.H., Yang X.B., Wu D.Y. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis. Int J Biol Macromol. 2023; 249:126058. doi:10.1016/j.ijbiomac.2023.126058.

18. Qiu S., Du J., Zhu T., Zhang H., Chen S., Wang C., Chen D, Lu S. Electrospun compliant heparinized elastic vascular graft for improving the patency after implantation. Int J Biol Macromol. 2023; 253(1):126598. doi:10.1016/j.ijbiomac.2023.126598.

19. Ilanlou S., Khakbiz M., Amoabediny G., Mohammadi J., Rabbani H. Carboxymethyl kappa carrageenan-modified decellularized small-diameter vascular grafts improving thromboresistance properties. J Biomed Mater Res A. 2019;107(8):1690-1701. doi:10.1002/jbm.a.36684.

20. Zhang C., Xie Q., Cha R., Ding L., Jia L., Mou L., Cheng S., Wang N., Li Z., Sun Y., Cui C., Zhang Y., Zhang Y., Zhou F., Jiang X. Anticoagulant Hydrogel Tubes with Poly(ɛ-Caprolactone) Sheaths for Small-Diameter Vascular Grafts. Adv Healthc Mater. 2021; 10(19):e2100839. doi:10.1002/adhm.202100839.

21. Wu Y., Wagner W.D. Syndecan-4 Functionalization Reduces the Thrombogenicity of Engineered Vascular Biomaterials. Ann Biomed Eng. 2024; 52(7):1873-1882. doi:10.1007/s10439-023-03199-w.

22. Antonova L.V., Silnikov V.N., Sevostyanova V.V., Yuzhalin A.E., Koroleva L.S., Velikanova E.A., Mironov A.V., Godovikova T.S., Kutikhin A.G., Glushkova T.V., Serpokrylova I.Y., Senokosova E.A., Matveeva V.G., Khanova M.Y., Akentyeva T.N., Krivkina E.O., Kudryavtseva Y.A., Barbarash L.S. Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification. Polymers (Basel). 2019; 11(1):174. doi:10.3390/polym11010174.

23. Gruzdeva O.V., Bychkova E.E., Penskaya T.Y., Kuzmina A.A., Antonova L.V., Barbarash L.S. Integral and Local Methods for the Evaluation of the Hemostasiological Profile in Sheep at Various Stages of Implantation of a Biodegradable Vascular Graft. Sovrem Tekhnologii Med. 2022;14(5):26-34. doi:10.17691/stm2022.14.5.03.

24. Antonova L.V., Krivkina E.O., Rezvova M.A., Sevostyanova V.V., Tkachenko V.O., Glushkova T.V., Akentyeva T.N., Kudryavtseva Yu.A., Barbarash L.S. A technology for anti-thrombogenic drug coating of small-diameter biodegradable vascular prostheses. Sovremennye tehnologii v medicine 2020; 12(6):6-14] doi:10.17691/stm2020.12.6.01. (In Russian)

25. Fortin W., Bouchet M., Therasse E., Maire M., Héon H., Ajji A., Soulez G., Lerouge S.. Negative In Vivo Results Despite Promising In Vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279:491-504. doi:10.1016/j.jss.2022.05.032.

26. Wang C., Li Z., Zhang L., Sun W., Zhou J. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020; 85:1-6. doi:10.1016/j.medengphy.2020.09.007.

27. Soldani G., Murzi M., Faita F., Di Lascio N., Al Kayal T., Spanò R., Canciani B., Losi P. In vivo evaluation of an elastomeric small-diameter vascular graft reinforced with a highly flexible Nitinol mesh. J Biomed Mater Res B Appl Biomater. 2019; 107(4):951-964. doi:10.1016/10.1002/jbm.b.34189.

28. Fang S., Ellman D.G., Andersen D.C. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells. 2021; 10(3):713. doi:10.1016/10.3390/cells10030713.

29. Antonova L.V., Krivkina E.O., Khanova M.Yu., Velikanova E.A., Matveeva V.G., Mironov А.V., Shabaev A.R., Senokosova Е.A., Glushkova T.V., Sinitsky M.Yu., Mukhamadiyarov R.А., Barbarash L.S. Results of preclinical trials in a sheep model of biodegradable small-diameter vascular grafts. Russian Journal of Transplantology and Artificial Organs. 2022; 24(3):80-93. doi:10.15825/1995-1191-2022-3-80-93. (In Russian)

30. Ye L., Takagi T., Tu C., Hagiwara A., Geng X., Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A. 2021; 109(12):2493-2505. doi:10.1002/jbm.a.37243.


Supplementary files

Review

For citations:


Senokosova E.A., Krivkina E.O., Mironov A.V., Sardin E.S., Sergeeva T.Yu., Matveeva V.G., Khanova M.Yu., Torgunakova E.A., Mukhamadiyarov R.A., Antonova L.V. RESULTS OF PRECLINICAL TESTS OF SMALL-DIAMETER TISSUE ENGINEERED VASCULAR GRAFTS ON THE PRIMATE MODEL. Complex Issues of Cardiovascular Diseases. 2024;13(4):90-103. (In Russ.)

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)