Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

РОЛЬ НЕЙТРОФИЛЬНЫХ ВНЕКЛЕТОЧНЫХ ЛОВУШЕК В РАЗВИТИИ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ У КАРДИОХИРУРГИЧЕСКИХ БОЛЬНЫХ: МЕТОДЫ ДИАГНОСТИКИ И КОРРЕКЦИИ

https://doi.org/10.17802/2306-1278-2024-13-4S-230-240

Аннотация

Основные положения

  • Нейтрофильные внеклеточные ловушки – неотъемлемая часть реакции макроорганизма на повреждение любой этиологии, значительно влияющая на течение патологического процесса. Несмотря на преимущественно положительное влияние, в ряде случаев при хронических заболеваниях и неотложных состояниях нейтрофильные внеклеточные ловушки и нетоз могут негативно воздействовать на состояние больного, ухудшая прогноз.
  • Разработка и применение экстракорпоральных методов лечения гиперактивного нетоза способно стабилизировать общее состояние критического больного.

 

Резюме

Вклад нейтрофилов в иммунный ответ хорошо изучен. Однако существуют механизмы нейтрофильного ответа, которые в ряде ситуаций способны значимо ухудшать состояние пациента, вследствие чего требуют дополнительного исследования. К таким механизмам относятся образуемые нейтрофилами внеклеточные ловушки (НВЛ), физиологическая и патофизиологическая роль которых последнее время вызывает значительный интерес. В частности, применение искусственного кровообращения может быть одним из триггеров активации нейтрофилов и чрезмерного образования НВЛ – нетоза. Нетоз негативно влияет на исход заболевания за счет усугубления синдрома полиорганной недостаточности и сепсиса. Методы диагностики и коррекции дезадаптационного нетоза у больных в критических состояниях изучены недостаточно. За последние годы разработаны и клинически апробируются устройства для экстракорпорального удаления НВЛ, эффективность которых еще предстоит изучить. Цель исследования – систематизация данных о роли НВЛ у пациентов кардиохирургического профиля в критических состояниях, выявление корреляции ухудшения динамики заболевания с проявлениями нетоза и определение возможности коррекции заявленных системных нарушений. Данный анализ представляет собой несистематический обзор литературных источников, представленных в зарубежных и российских научных базах данных.

Об авторах

Дмитрий Леонидович Шукевич
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

доктор медицинских наук заведующий лабораторией анестезиологии-реаниматологии и патофизиологии критических состояний отдела хирургии сердца и сосудов федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Тимофей Александрович Баев
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

лаборант-исследователь лаборатории анестезиологии-реаниматологии и патофизиологии критических состояний отдела хирургии сердца и сосудов федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Владислав Анатольевич Бабков
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

врач-стажер отделения анестезиологии и реанимации федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Список литературы

1. Liew P.X., Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-1248. doi: 10.1152/physrev.00012.2018.

2. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-31. doi: 10.1038/nri3024.

3. Ярилин, А. А. Иммунология. Москва: ГЭОТАР-Медиа, 2010. 752 с.

4. Chu H. T., Lin H., Tsao T. T., Chang C. F., Hsiao W. W., Yeh T. J., Chang C. M., Liu Y. W., Wang T. Y., Yang K. C., Chen T. J., Chen J. C., Chen K. C., Kao C. Y. Genotyping of human neutrophil antigens (HNA) from whole genome sequencing data. BMC Med Genomics. 2013;6:31. doi: 10.1186/1755-8794-6-31.

5. Mescher A.L. Junqueira's Basic Histology. Publisher: McGraw-Hill Medical, 2016.

6. Takei H., Araki A., Watanabe H., Ichinose A., Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229-40. doi: 10.1002/jlb.59.2.229.

7. Долгушин И.И., Aндреева Ю.С., Савочкина A.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. Москва : Изд-во РAМН, 2009. 203с.

8. Hoyer F.F., Nahrendorf M. Neutrophil contributions to ischaemic heart disease. Eur Heart J. 2017 Feb 14;38(7):465-472. doi: 10.1093/eurheartj/ehx017.

9. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. doi: 10.1083/jcb.200606027.

10. Sherer Y., Gorstein A., Fritzler M.J., Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34(2):501-37. doi: 10.1016/j.semarthrit.2004.07.002..

11. Zhu Y., Xia X., He Q., Xiao Q.A., Wang D., Huang M., Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne). 2023;14:1202463. doi: 10.3389/fendo.2023.1202463.

12. Pieterse E, Rother N, Yanginlar C, Gerretsen J, Boeltz S, Munoz LE, Herrmann M, Pickkers P, Hilbrands LB, van der Vlag J. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77(12):1790-1798. doi: 10.1136/annrheumdis-2018-213223.

13. Villanueva E., Yalavarthi S., Berthier C.C., Hodgin J.B., Khandpur R., Lin A.M., Rubin C.J., Zhao W., Olsen S.H., Klinker M. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–552. doi: 10.4049/jimmunol.1100450.

14. Здравоохранение в России. 2023. М.:Стат.сб./Росстат, 2023. 179 с.

15. Bahit M. C., Kochar A., Granger C. B. Post-myocardial infarction heart failure. JACC. Heart Failure. 2018;6(3):179–186. doi: 10.1016/j.jchf.2017.09.015

16. Packer M., Lam C. S. P., Lund L. H., Redfield M. M. Interdependence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy. Circulation. 2020;141(1):4–6. doi: 10.1161/CIRCULATIONAHA.119.042996

17. Bonaventura A., Vecchié A., Abbate A., Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:231. doi: 10.3390/cells9010231

18. Chen T., Li Y., Sun R., Hu H., Liu Y., Herrmann M., Zhao Y., Muñoz L.E. Receptor-Mediated NETosis on Neutrophils. Front Immunol. 2021;12:775267. doi: 10.3389/fimmu.2021.775267.

19. Bonaventura A., Liberale L., Carbone F., Vecchie A., Diaz-Canestro C., Camici G.G., Montecucco F., Dallegri F. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost. 2018 Jan;118(1):6-27. doi: 10.1160/TH17-09-0630.

20. Su F., Moreau A., Savi M., Salvagno M., Annoni F., Zhao L., Xie K., Vincent J.L., Taccone F.S. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines. 2024;12(7):1385. doi: 10.3390/biomedicines12071385.

21. James P., Kaushal D., Beaumont Wilson R. NETosis in Surgery: Pathophysiology, Prevention, and Treatment. Ann Surg. 2024;279(5):765-780. doi: 10.1097/SLA.0000000000006196.

22. Yang K., Gao R., Chen H., Hu J., Zhang P., Wei X., Shi J., Chen Y., Zhang L., Chen J. et al. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J. 2024;45(18):1662-1680. doi: 10.1093/eurheartj/ehae205.

23. Nunez J.H., Juan C., Sun Y., Hong J., Bancroft A.C., Hwang C., Medrano J.M., Huber A.K., Tower R.J., Levi B. Neutrophil and NETosis Modulation in Traumatic Heterotopic Ossification. Ann Surg. 2023;278(6):e1289-e1298. doi: 10.1097/SLA.0000000000005940.

24. Li R.H., Tablin F. A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci. 2018; 5:291. doi: 10.3389/fvets.2018.00291.

25. Abrams S.T., Zhang N., Manson J., Liu T., Dart C., Baluwa F., Wang S.S., Brohi K., Kipar A., Yu W. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160–169. doi: 10.1164/rccm.201206-1037OC.

26. Аверина Т.Б. Искусственное кровообращение. Анналы хирургии. 2013; 2:5-12.

27. Maisat W., Hou L., Sandhu S., Sin Y.C., Kim S., Pelt H.V., Chen Y., Emani S., Kong S.W., Emani S., Ibla J., Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. bioRxiv [Preprint]. 2023:2023.12.21.572768. doi: 10.1101/2023.12.21.572768.

28. Salazar-Gonzalez H., Zepeda-Hernandez A., Melo Z., Saavedra-Mayorga D.E., Echavarria R. Neutrophil Extracellular Traps in the Establishment and Progression of Renal Diseases. Medicina (Kaunas). 2019;55(8):431. doi: 10.3390/medicina55080431.

29. Ham A., Rabadi M., Kim M., Brown K.M., Ma Z., D'Agati V., Lee H.T. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;307(9):F1052-62. doi: 10.1152/ajprenal.00243.2014.

30. Raup-Konsavage W.M., Wang Y., Wang W.W., Feliers D., Ruan H., Reeves W.B. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365-374. doi: 10.1016/j.kint.2017.08.014.

31. Nakazawa D., Kumar S.V., Marschner J., Desai J., Holderied A., Rath L., Kraft F., Lei Y., Fukasawa Y., Moeckel G.W., Angelotti M.L., Liapis H., Anders H.J. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J Am Soc Nephrol. 2017;28(6):1753-1768. doi: 10.1681/ASN.2016080925.

32. Stapels D.A., Geisbrecht B.V., Rooijakkers S.H. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol. 2015;23:42-8. doi: 10.1016/j.mib.2014.11.002.

33. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against candida albicans. PloS Pathog (2009) 5:e1000639. doi: 10.1371/journal.ppat.1000639

34. Carden D, Xiao F, Moak C, Willis BH, Robinson-Jackson S, Alexander S. Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins. Am J Physiology-Heart Circulatory Physiol (1998) 275:H385–92. doi: 10.1152/ajpheart.1998.275.2.H385

35. Suzuki K., Okada H., Takemura G., Takada C., Kuroda A., Yano H., Zaikokuji R., Morishita K., Tomita H., Oda K., et al. Neutrophil elastase damages the pulmonary endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia. Am J Pathol. 2019;189(8):1526–35. doi: 10.1016/j.ajpath.2019.05.002

36. Martinod K., Witsch T., Farley K., Gallant M., Remold-O’Donnell E., Wagner D.D. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemostasis.(2016;14(3):551–8. doi: 10.1111/jth.13239

37. Ebrahimi F., Giaglis S., Hahn S., Blum C.A., Baumgartner C., Kutz A., van Breda S.V., Mueller B., Schuetz P., Christ-Crain M., Hasler P. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur Respir J. 2018;51(4):1701389. doi: 10.1183/13993003.01389-2017.

38. Vassallo A., Wood A.J., Subburayalu J., Summers C., Chilvers E.R. The counter-intuitive role of the neutrophil in the acute respiratory distress syndrome. Br Med Bull. 2019;131(1):43-55. doi: 10.1093/bmb/ldz024.

39. Clancy D.M., Sullivan G.P., Moran H.B.T., Henry C.M., Reeves E.P., McElvaney N.G., Lavelle E.C., Martin S.J. Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep. 2018;22(11):2937-2950. doi: 10.1016/j.celrep.2018.02.062.

40. Toy P., Lowell C. TRALI - definition, mechanisms, incidence and clinical relevance. Best Pract Res Clin Anaesthesiol. 2007; 21(2):183–93. doi: 10.1016/j.bpa.2007.01.003

41. Rebetz J., Semple J.W., Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother. 2018;45(5):290-298. doi: 10.1159/000492950.

42. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., Toy P., Werb Z., Looney M.R. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661-71. doi: 10.1172/JCI61303.

43. Hakkim A., Fuchs T.A., Martinez N.E., Hess S., Prinz H., Zychlinsky A., Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75-7. doi: 10.1038/nchembio.496.

44. Ma Y., Yang X., Chatterjee V., Meegan J.E., Beard R.S.Jr., Yuan S.Y. Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability. Front Immunol. 2019;10:1037. doi: 10.3389/fimmu.2019.01037.

45. Sun S., Duan Z., Wang X., Chu C., Yang C., Chen F., Wang D., Wang C., Li Q., Ding W. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12(6):606. doi: 10.1038/s41419-021-03896-1.

46. Гусакова Н., Ярец Ю., Гомоляко А NET: охота продолжается. Наука и инновации. 2017; 4(170): 68-72.

47. Хаертынов Х.С., Анохин В.А., Галина Г.В., Бойчук С.В., Донцова Н.В. Выраженность нетоза при неонатальном сепсисе. Российский вестник перинатологии и педиатрии. 2020;65(5):164-168. doi; 10.21508/1027-4065-2020-65-5-164-168.

48. Ostafin M., Pruchniak M.P., Ciepiela O., Reznick A.Z., Demkow U. Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation. Anal Biochem. 2016;509:60-66. doi: 10.1016/j.ab.2016.05.003.

49. Асеева ЕА, Покровский НС, Соловьев СК, Николаева ЕВ, Никишина НЮ, Абдуллин ЕТ, Решетняк ТМ, Зоткин ЕГ, Лила АМ. Первый клинический опыт применения селективной плазмосорбции ДНК с использованием сорбционной колонки «НуклеоКор®» при лечении системной красной волчанки. Современная ревматология. 2024;18(2):75-80. doi:10.14412/1996-7012-2024-2-75-80

50. Асвани Э. Внеклеточные нейтрофильные ловушки – новая мишень для лечебного афереза: доклинические исследования, первые клинические данные и перспективы для использования. В Лечебный гемаферез и экстракорпоральная гемокоррекция: достижения и надежд»: материалы VI конференции Национального общества специалистов в области гемафереза и экстракорпоральной гемокоррекции. Санкт-Петербург, 2023


Рецензия

Для цитирования:


Шукевич Д.Л., Баев Т.А., Бабков В.А. РОЛЬ НЕЙТРОФИЛЬНЫХ ВНЕКЛЕТОЧНЫХ ЛОВУШЕК В РАЗВИТИИ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ У КАРДИОХИРУРГИЧЕСКИХ БОЛЬНЫХ: МЕТОДЫ ДИАГНОСТИКИ И КОРРЕКЦИИ. Комплексные проблемы сердечно-сосудистых заболеваний. 2024;13(4S):230-240. https://doi.org/10.17802/2306-1278-2024-13-4S-230-240

For citation:


Shukevich D.L., Baev T.A., Babkov V.A. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS IN THE DEVELOPMENT OF PATHOLOGICAL CONDITIONS IN CARDIAC SURGERY PATIENTS: DIAGNOSTIC AND CORRECTION METHODS. Complex Issues of Cardiovascular Diseases. 2024;13(4S):230-240. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-230-240

Просмотров: 228


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)