Preview

Complex Issues of Cardiovascular Diseases

Advanced search

THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS IN THE DEVELOPMENT OF PATHOLOGICAL CONDITIONS IN CARDIAC SURGERY PATIENTS: DIAGNOSTIC AND CORRECTION METHODS

https://doi.org/10.17802/2306-1278-2024-13-4S-230-240

Abstract

Highlights

  • Neutrophil extracellular traps (NETs) take a predominant part in the reaction of the macroorganism to damage of any etiology and make a significant contribution during the pathological process. However, in many chronic diseases and urgent conditions, NETs and NETosis negatively affect the patient's condition, worsening the prognosis of the outcome.
  • The development and application of extracorporeal therapies can help break the vicious circle of NETosis and stabilize the general condition of a critical patient.

 

Abstract

The role of neutrophils in the immune response has been studied quite well. However, there are mechanisms of neutrophil response that can significantly worsen the patient's condition, thus requiring additional study. Such mechanisms include neutrophil extracellular traps (NETs), the physiological and pathophysiological role of which has recently been of great interest. In particular, the use of cardiopulmonary bypass (CPB) may be one of the mechanisms of neutrophil activation and excessive NETs–NETosis formation. NETosis negatively affects the outcome of the disease due to the aggravation of multiple organ dysfunction syndrome (MODS) and sepsis. The methods of diagnosis and treatment for NETosis in patients in critical condition have not been sufficiently studied. Nevertheless, recently scientists developed and clinically tested devices for extracorporeal removal of NETs, which are of great scientific and practical interest, since the effectiveness of NETs sorption has not been studied yet.

About the Authors

Dmitry L. Shukevich
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Head of the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Timofey A. Baev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Researcher at the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Vladislav A. Babkov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Trainee Physician at the Department of Anesthesiology and Intensive Care, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Liew P.X., Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-1248. doi: 10.1152/physrev.00012.2018.

2. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-31. doi: 10.1038/nri3024.

3. Yarilin A. A. Immunologiya. Mscow: GEOTAR-Media, 2010. (In Russian)

4. Chu H. T., Lin H., Tsao T. T., Chang C. F., Hsiao W. W., Yeh T. J., Chang C. M., Liu Y. W., Wang T. Y., Yang K. C., Chen T. J., Chen J. C., Chen K. C., Kao C. Y. Genotyping of human neutrophil antigens (HNA) from whole genome sequencing data. BMC Med Genomics. 2013;6:31. doi: 10.1186/1755-8794-6-31.

5. Mescher A.L. Junqueira's Basic Histology. Publisher: McGraw-Hill Medical, 2016.

6. Takei H., Araki A., Watanabe H., Ichinose A., Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 1996;59(2):229-40. doi: 10.1002/jlb.59.2.229.

7. Dolgushin I. I., Andreeva Yu. S., Savochkina A. Yu. Neĭtrofilʹnye vnekletochnye lovushki i metody ot︠s︡enki funkt︠s︡ionalʹnogo statusa neĭtrofilov. Moscow: Izd-vo RAMN, 2009 (In Russian)

8. Hoyer F.F., Nahrendorf M. Neutrophil contributions to ischaemic heart disease. Eur Heart J. 2017 Feb 14;38(7):465-472. doi: 10.1093/eurheartj/ehx017.

9. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. doi: 10.1083/jcb.200606027.

10. Sherer Y., Gorstein A., Fritzler M.J., Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34(2):501-37. doi: 10.1016/j.semarthrit.2004.07.002..

11. Zhu Y., Xia X., He Q., Xiao Q.A., Wang D., Huang M., Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne). 2023;14:1202463. doi: 10.3389/fendo.2023.1202463.

12. Pieterse E, Rother N, Yanginlar C, Gerretsen J, Boeltz S, Munoz LE, Herrmann M, Pickkers P, Hilbrands LB, van der Vlag J. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018;77(12):1790-1798. doi: 10.1136/annrheumdis-2018-213223.

13. Villanueva E., Yalavarthi S., Berthier C.C., Hodgin J.B., Khandpur R., Lin A.M., Rubin C.J., Zhao W., Olsen S.H., Klinker M. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–552. doi: 10.4049/jimmunol.1100450.

14. Zdravookhranenie v Rossii. 2023. Moscow: Stat.sb./Rosstat, 2023. (In Russian)

15. Bahit M. C., Kochar A., Granger C. B. Post-myocardial infarction heart failure. JACC. Heart Failure. 2018;6(3):179–186. doi: 10.1016/j.jchf.2017.09.015

16. Packer M., Lam C. S. P., Lund L. H., Redfield M. M. Interdependence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy. Circulation. 2020;141(1):4–6. doi: 10.1161/CIRCULATIONAHA.119.042996

17. Bonaventura A., Vecchié A., Abbate A., Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:231. doi: 10.3390/cells9010231

18. Chen T., Li Y., Sun R., Hu H., Liu Y., Herrmann M., Zhao Y., Muñoz L.E. Receptor-Mediated NETosis on Neutrophils. Front Immunol. 2021;12:775267. doi: 10.3389/fimmu.2021.775267.

19. Bonaventura A., Liberale L., Carbone F., Vecchie A., Diaz-Canestro C., Camici G.G., Montecucco F., Dallegri F. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost. 2018 Jan;118(1):6-27. doi: 10.1160/TH17-09-0630.

20. Su F., Moreau A., Savi M., Salvagno M., Annoni F., Zhao L., Xie K., Vincent J.L., Taccone F.S. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines. 2024;12(7):1385. doi: 10.3390/biomedicines12071385.

21. James P., Kaushal D., Beaumont Wilson R. NETosis in Surgery: Pathophysiology, Prevention, and Treatment. Ann Surg. 2024;279(5):765-780. doi: 10.1097/SLA.0000000000006196.

22. Yang K., Gao R., Chen H., Hu J., Zhang P., Wei X., Shi J., Chen Y., Zhang L., Chen J. et al. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J. 2024;45(18):1662-1680. doi: 10.1093/eurheartj/ehae205.

23. Nunez J.H., Juan C., Sun Y., Hong J., Bancroft A.C., Hwang C., Medrano J.M., Huber A.K., Tower R.J., Levi B. Neutrophil and NETosis Modulation in Traumatic Heterotopic Ossification. Ann Surg. 2023;278(6):e1289-e1298. doi: 10.1097/SLA.0000000000005940.

24. Li R.H., Tablin F. A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci. 2018; 5:291. doi: 10.3389/fvets.2018.00291.

25. Abrams S.T., Zhang N., Manson J., Liu T., Dart C., Baluwa F., Wang S.S., Brohi K., Kipar A., Yu W. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160–169. doi: 10.1164/rccm.201206-1037OC.

26. Averina T.B. Extracorporeal circulation. Annaly khirurgii. 2013; 2: 5-12. (In Russian)

27. Maisat W., Hou L., Sandhu S., Sin Y.C., Kim S., Pelt H.V., Chen Y., Emani S., Kong S.W., Emani S., Ibla J., Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. bioRxiv [Preprint]. 2023:2023.12.21.572768. doi: 10.1101/2023.12.21.572768.

28. Salazar-Gonzalez H., Zepeda-Hernandez A., Melo Z., Saavedra-Mayorga D.E., Echavarria R. Neutrophil Extracellular Traps in the Establishment and Progression of Renal Diseases. Medicina (Kaunas). 2019;55(8):431. doi: 10.3390/medicina55080431.

29. Ham A., Rabadi M., Kim M., Brown K.M., Ma Z., D'Agati V., Lee H.T. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;307(9):F1052-62. doi: 10.1152/ajprenal.00243.2014.

30. Raup-Konsavage W.M., Wang Y., Wang W.W., Feliers D., Ruan H., Reeves W.B. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365-374. doi: 10.1016/j.kint.2017.08.014.

31. Nakazawa D., Kumar S.V., Marschner J., Desai J., Holderied A., Rath L., Kraft F., Lei Y., Fukasawa Y., Moeckel G.W., Angelotti M.L., Liapis H., Anders H.J. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J Am Soc Nephrol. 2017;28(6):1753-1768. doi: 10.1681/ASN.2016080925.

32. Stapels D.A., Geisbrecht B.V., Rooijakkers S.H. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol. 2015;23:42-8. doi: 10.1016/j.mib.2014.11.002.

33. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against candida albicans. PloS Pathog (2009) 5:e1000639. doi: 10.1371/journal.ppat.1000639

34. Carden D, Xiao F, Moak C, Willis BH, Robinson-Jackson S, Alexander S. Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins. Am J Physiology-Heart Circulatory Physiol (1998) 275:H385–92. doi: 10.1152/ajpheart.1998.275.2.H385

35. Suzuki K., Okada H., Takemura G., Takada C., Kuroda A., Yano H., Zaikokuji R., Morishita K., Tomita H., Oda K., et al. Neutrophil elastase damages the pulmonary endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia. Am J Pathol. 2019;189(8):1526–35. doi: 10.1016/j.ajpath.2019.05.002

36. Martinod K., Witsch T., Farley K., Gallant M., Remold-O’Donnell E., Wagner D.D. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemostasis.(2016;14(3):551–8. doi: 10.1111/jth.13239

37. Ebrahimi F., Giaglis S., Hahn S., Blum C.A., Baumgartner C., Kutz A., van Breda S.V., Mueller B., Schuetz P., Christ-Crain M., Hasler P. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur Respir J. 2018;51(4):1701389. doi: 10.1183/13993003.01389-2017.

38. Vassallo A., Wood A.J., Subburayalu J., Summers C., Chilvers E.R. The counter-intuitive role of the neutrophil in the acute respiratory distress syndrome. Br Med Bull. 2019;131(1):43-55. doi: 10.1093/bmb/ldz024.

39. Clancy D.M., Sullivan G.P., Moran H.B.T., Henry C.M., Reeves E.P., McElvaney N.G., Lavelle E.C., Martin S.J. Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep. 2018;22(11):2937-2950. doi: 10.1016/j.celrep.2018.02.062.

40. Toy P., Lowell C. TRALI - definition, mechanisms, incidence and clinical relevance. Best Pract Res Clin Anaesthesiol. 2007; 21(2):183–93. doi: 10.1016/j.bpa.2007.01.003

41. Rebetz J., Semple J.W., Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother. 2018;45(5):290-298. doi: 10.1159/000492950.

42. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., Toy P., Werb Z., Looney M.R. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661-71. doi: 10.1172/JCI61303.

43. Hakkim A., Fuchs T.A., Martinez N.E., Hess S., Prinz H., Zychlinsky A., Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75-7. doi: 10.1038/nchembio.496.

44. Ma Y., Yang X., Chatterjee V., Meegan J.E., Beard R.S.Jr., Yuan S.Y. Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability. Front Immunol. 2019;10:1037. doi: 10.3389/fimmu.2019.01037.

45. Sun S., Duan Z., Wang X., Chu C., Yang C., Chen F., Wang D., Wang C., Li Q., Ding W. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12(6):606. doi: 10.1038/s41419-021-03896-1.

46. Husakova N., Yarets Yu., Hamaliaka A. Net: the hunt goes on. Nauka i innovatsii. 2017; 4(170): 68-72. (Inn Russian)

47. Khaertynov Kh.S., Anokhin V.A., Galina G.V., Boychuk S.V., Dontsova N.V. The severity of netosis in patients with neonatal sepsis. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020;65(5):164-168. doi; 10.21508/1027-4065-2020-65-5-164-168. (In Russian)

48. Ostafin M., Pruchniak M.P., Ciepiela O., Reznick A.Z., Demkow U. Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation. Anal Biochem. 2016;509:60-66. doi: 10.1016/j.ab.2016.05.003.

49. Aseeva E.A., Pokrovskii N.S., Soloviev S.K., Nikolaeva E.V., Nikishina N.Yu., Abdullin E.T., Reshetnyak T.M., Zotkin E.G., Lila A.M. The first clinical experience with selective DNA plasmasorption using the NucleoCapture Device in the treatment of systemic lupus erythematosus. Sovremennaya revmatologiya=Modern Rheumatology Journal. . 2024; 18(2):75-80. doi:10.14412/1996-7012-2024-2-75-80 (In Russian)

50. Asvani Je. Vnekletochnye nejtrofil'nye lovushki – novaja mishen' dlja lechebnogo afereza: doklinicheskie issledovanija, pervye klinicheskie dannye i perspektivy dlja ispol'zovanija. V Lechebnyj gemaferez i jekstrakorporal'naja gemokorrekcija: dostizhenija i nadezhd»: materialy VI konferencii Nacional'nogo obshhestva specialistov v oblasti gemafereza i jekstrakorporal'noj gemokorrekcii. Sankt-Peterburg, 2023. (In Russian)


Review

For citations:


Shukevich D.L., Baev T.A., Babkov V.A. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS IN THE DEVELOPMENT OF PATHOLOGICAL CONDITIONS IN CARDIAC SURGERY PATIENTS: DIAGNOSTIC AND CORRECTION METHODS. Complex Issues of Cardiovascular Diseases. 2024;13(4S):230-240. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-230-240

Views: 226


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)