Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

THE EFFECT OF MILD COGNITIVE IMPAIRMENT ON EEG TOPOGRAPHIC CHANGES AFTER ON-PUMP CORONARY ARTERY BYPASS GRAFTING

https://doi.org/10.17802/2306-1278-2017-1-37-43

Полный текст:

Аннотация

The purpose. Previously it was shown that on-pump coronary artery bypass grafting (CABG) induced cerebral ischemia and cognitive decline. The patients with mild cognitive impairment (MCI) could be a high-risk group of CABG-associated cognitive decline. Non-invasive neuromonitoring can provide information regarding subclinical symptoms and topography of cerebral ischemia. The aim of this study was to investigate the topographic changes in electroencephalogram (EEG) spectral power in coronary artery disease (CAD) patients with or without MCI before and after on-pump CABG.

Methods: 62 males with CAD were divided into two groups according to their Mini-Mental State Examination: without MCI (n = 37) and with MCI (n = 25). Clinical factors were assessed, including the severity of coronary lesions (SYNTAX score), the left ventricular ejection fraction (LVEF). Eyes-closed rest EEG was recorded from 62 channels positioned according to the International 10–20 system. Spectral EEG power was calculated for frequencies from 0.1 to 50 Hz.

Results: The patients with MCI had theta-1 (4–6 Hz) power increase 7-10 days after on-pump CABG only in frontal and fronto-central clusters of right and left hemispheres as compared to the preoperative values, whereas in the groups without MCI this effect was widespread over the brain. In the beta-1 band (13–20 Hz), CABG patients with MCI had power increase in the frontal, fronto-central and fronto-temporal regions of the brain cortex. Similar power changes in patients without MCI were observed only for occipital brain clusters. 

Conclusions: CAD patients with MCI have demonstrated EEG signs of cortical dysfunction focused on the frontal brain areas. Cortical dysfunction in this localization can be associated with the progression of cognitive deficits, causing loss social integration in CAD patients with MCI.

Об авторах

I. V. TARASOVA
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Россия

Адрес: 650002, г. Кемерово, Сосновый бульвар, д. 6 Тел. 8(3842) 64-37-58



O. V. MALEVA
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Россия
Kemerovo, Russia


R. S. TARASOV
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Россия
Kemerovo, Russia


O. L. BARBARASH
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Россия
Kemerovo, Russia


L. S. BARBARASH
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Россия
Kemerovo, Russia


Список литературы

1. Alwerdt, J., Edwards, J.D., Athilingam, P., O’Connor, M.L., Valdés, E.G. Longitudinal differences in cognitive functioning among older adults with and without heart failure. J Aging Health., 2013; 25(8): 1358-1377. doi: 10.1177/0898264313505111.

2. Babiloni C., De Pandis M.F., Vecchio F., Buffo P., Sorpresi F., Frisoni G.B. et al. Cortical sources of resting state electroencephalographic rhythms in Parkinson’s disease related dementia and Alzheimer’s disease. Clin Neurophysiol. 2011; 122(12): 2355-2364. doi: 10.1016/j.clinph.2011.03.029.

3. Bennys, K., Rondouin, G., Benattar, E., Gabelle, A., Touchon, J. Can event-related potential predict the progression of mild cognitive impairment? J. Clin. Neurophysiol., 2011; 28(6): 625-632. doi: 10.1097/WNP.0b013e31823cc2d3.

4. Bonanni L., Thomas A., Tiraboschi P., Perfetti B., Varanese S., Onofrj M. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain 2008; 131: 690-705. doi: 10.1093/brain/awm322.

5. Buckner R.L. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron., 2004; 44(1): 195-208.

6. Butz, M., Gross, J., Timmermann, L., Moll, M., Freund, H.J., Witte, O.W. et al. Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett., 2004; 355(1-2), 93-96.

7. Carrascal, Y., Guerrero, A.L. Neurological damage related to cardiac surgery: pathophysiology, diagnostic tools and prevention strategies. Using actual knowledge for planning the future. Neurologist., 2010; 16(3), 152-164. doi: 10.1097/NRL.0b013e3181bd602b.

8. Crews, F.T., Boettiger, C.A. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009; 93(3): 237-247. doi: 10.1016/j.pbb.2009.04.018.

9. de la Torre, J.C. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol. 2012; 2012: 367516. doi: 10.1155/2012/367516

10. de Souza L.C., Guimarães H.C., Teixeira A.L., Caramelli P., Levy R., Dubois B. et al. Frontal lobe neurology and the creative mind. Front Psychol. 2014; 5: 761.

11. Edman, A., Edenbrandt, L., Fredén-Lindqvist, J., Nilsson, M., Wallin, A. Asymmetric cerebral blood flow in patients with mild cognitive impairment: possible relationship to further cognitive deterioration. Dement Geriatr Cogn Dis Extra, 2011; 1(1), 228-236. doi: 10.1159/000329447.

12. Gehring, H., Meyer zu Westrup, L., Boye, S., Opp, A., Hofmann, U. Transcranial doppler, EEG and SEP monitoring. Applied Cardiopulmonary Pathophysiology, 2009; 13: 26-00.

13. Golukhova, E.Z., Polunina, A.G., Lefterova, N.P., Begachev, A.V. Electroencephalography as a tool for assessment of brain ischemic alterations after open heart operations. Stroke Res Treat., 2011; 2011, 980873. doi: 10.4061/2011/980873.

14. Gottesman R.F., Hillis A.E., Grega M.A., Borowicz L.M., Selnes O.A., Baumgartner W.A. et al. Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation. Arch Neurol., 2007; 64(8), 1111-1114.

15. Guarracino, F. Cerebral monitoring during cardiovascular surgery Curr Opin Anaesthesiol., 2008; 21(1), 50-54. doi: 10.1097/ACO.0b013e3282f3f499.

16. Gugino L.D., Aglio L.S., Yli-Hankala A. Monitoring the electroencephalogram during bypass procedures. Semin Cardiothorac Vasc Anesth. 2004; 8(2): 61-83.

17. Hatz, F., Benz, N., Hardmeier, M., Zimmermann, R., Rueegg, S., Schindler, C. et al. Quantitative EEG and apolipoprotein E-genotype improve classification of patients with suspected Alzheimer’s disease. Clin Neurophysiol., 2013; 124(11): 2146-2152. doi: 10.1016/j.clinph.2013.04.339.

18. Hudetz, J.A., Patterson, K.M., Pagel, P.S. Comparison of pre-existing cognitive impairment, amnesic mild cognitive impairment, and multiple domain mild cognitive impairment in men scheduled for coronary artery surgery. Eur J Anaesthesiol., 2012; 29(7), 320-325. doi: 10.1097/EJA.0b013e328354223d.

19. Huijts, M., van Oostenbrugge, R.J., Duits, A., Burkard, T., Muzzarelli, S., Maeder, M.T. et al. Cognitive impairment in heart failure: results from the Trial of Intensified versus standard Medical therapy in Elderly patients with Congestive Heart Failure (TIME-CHF) randomized trial. Eur J Heart Fail., 2013; 15(6), 699-707. doi: 10.1093/eurjhf/hft020.

20. Isley M.R., Edmonds H.L. Jr., Stecker M. Guidelines for intraoperative neuromonitoring using raw (analog or digital waveforms) and quantitative electroencephalography: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput., 2009; 23(6): 369-390. doi: 10.1007/s10877-009-9191-y.

21. Kline R.P., Pirraglia E., Cheng H., De Santi S., Li Y., Haile M., de Leon M.J., Bekker A. () Surgery and brain atrophy in cognitively normal elderly subjects and subjects diagnosed with mild cognitive impairment. Anesthesiology., 2012; 116(3): 603- 612. doi: 10.1097/ALN.0b013e318246ec0b.

22. Klinger, R.Y., James, O.G., Wong, T.Z., Newman, M.F., Doraiswamy, P.M., Mathew, J.P. Cortical β-amyloid levels and neurocognitive performance after cardiac surgery. BMJ Open., 2013; 3(9), e003669. doi: 10.1136/bmjopen-2013-003669.

23. Kramberger, M.G., Kareholt, I., Andersson, T., Winblad, B., Eriksdotter, M., Jelic, V. Association between EEG abnormalities and CSF biomarkers in a memory clinic cohort. Dement. Geriatr. Cogn. Disord., 2013; 36(5-6), 319-328. Epub 2013/09/10.

24. Lee, K.B., Budoff, M.J., Zavodni, A., Polak, J.F., Jeffrey, C.J., Burke, G.L. et al. Coronary artery calcium is associated with degree of stenosis and surface irregularity of carotid artery. Atherosclerosis. 2012; 223(1): 160-165. doi:10.1016/j.atherosclerosis.2012.05.012.

25. Levy, R., Goldman-Rakic, P.S. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res. 2000; 133(1): 23-32.

26. Moretti, D.V., Zanetti, O., Binetti, G., Frisoni, G.B. Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment. Int J Alzheimers Dis. 2012; 2012: 917537. doi: 10.1155/2012/917537.

27. Moritz, S., Rochon, J., Völkel, S., Hilker, M., Hobbhahn, J., Graf, B.M. et al. Determinants of cerebral oximetry in patients undergoing off-pump coronary artery bypass grafting: an observational study. Eur J Anaesthesiol. 2010; 27(6):542-549. doi: 10.1097/EJA.0b013e3283343ef8.

28. Moyanova, S.G., Dijkhuizen, R.M. Present status and future challenges of electroencephalography- and magnetic resonance imaging-based monitoring in preclinical models of focal cerebral ischemia. Brain Res Bull. 2014; 102: 22-36. doi: 10.1016/j.brainresbull.2014.01.003.

29. Ochfeld, E., Newhart, M., Molitoris, J., Leigh, R., Cloutman, L., Davis, C. et al. Ischemia in Broca area is associated with Broca aphasia more reliably in acute than in chronic stroke. Stroke. 2010; 41(2): 325-330. doi: 10.1161/STROKEAHA.109.570374.

30. Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J Intern Med., 2004; 256(3), 183-194.

31. Plaschke K., Fichtenkamm P., Schramm C., Hauth S., Martin E., Verch M., Karck M., Kopitz J. Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensive Care Med., 2010; 36(12): 2081-2089. doi: 10.1007/s00134-010-2004-4.

32. Semmler, A., Hermann, S., Mormann, F., Weberpals, M., Paxian, S.A., Okulla, T. et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation. 2008; 5: 38. doi: 10.1186/1742-2094-5-38.

33. Siepe M., Pfeiffer T., Gieringer A., Zemann S., Benk C., Schlensak C. et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac Surg., 2011; 40(1), 200-207. doi: 10.1016/j.ejcts.2010.11.024.

34. Silbert, B.S., Scott, D.A., Evered, L.A., Lewis, M.S., Maruff, P.T. Preexisting cognitive impairment in patients scheduled for elective coronary artery bypass graft surgery. Anesth Analg. 2007; 104(5): 1023-1028.

35. Sloan, M.A. Prevention of ischemic neurologic injury with intraoperative monitoring of selected cardiovascular and cerebrovascular procedures: Roles of electroencephalography, somatosensory evoked potentials, transcranial doppler, and near-infrared spectroscopy. Neurol Clin 2006; 24: 631-45.

36. Steinvil A., Sadeh B., Arbel Y., Justo D., Belei A., Borenstein N. et al. Prevalence and predictors of concomitant carotid and coronary artery atherosclerotic disease. J Am Coll Cardiol. 2011; 57(7): 779-783. doi: 10.1016/j.jacc.2010.09.047.

37. Stewart, R. Vascular dementia: a diagnosis running out of time. Br. J. Psychiatry. 2002; 180: 152-156.

38. Tarasova, I.V., Volf, N.V., Trubnikova, O.A., Barbarash, O.L. Electroencephalogram changes in patients undergoing on-pump coronary artery bypass grafting. Neurosci Behav Physiol., 2013b; 43 (5), 577-581.

39. Trubnikova, O.A., Mamontova, A.S., Syrova, I.D., Maleva, O.V., Barbarash, O.L. Does preoperative mild cognitive impairment predict postoperative cognitive dysfunction after on-pump coronary bypass surgery? J. Alzheimers Dis., 2014; 42(0), S45-51. doi: 10.3233/JAD-132540.

40. van Dam, N.T., Sano, M., Mitsis, E.M., Grossman, H.T., Gu, X., Park, Y., Hof, P.R, Fan, J. Functional neural correlates of attentional deficits in amnestic mild cognitive impairment. PLoS One. 2013; 8(1): e54035. doi: 10.1371/journal.pone.0054035.

41. van Harten, A.E., Scheeren, T.W., Absalom, A.R. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia; 2012; 67(3): 280-293. doi: 10.1111/j.1365-2044.2011.07008.x.

42. Vecchio F., Babiloni C., Lizio R., Fallani F.V., Blinowska K., Verrienti G. et al. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013; 62: 223-236.


Для цитирования:


TARASOVA I.V., MALEVA O.V., TARASOV R.S., BARBARASH O.L., BARBARASH L.S. THE EFFECT OF MILD COGNITIVE IMPAIRMENT ON EEG TOPOGRAPHIC CHANGES AFTER ON-PUMP CORONARY ARTERY BYPASS GRAFTING. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;(1):37-43. https://doi.org/10.17802/2306-1278-2017-1-37-43

For citation:


TARASOVA I.V., MALEVA O.V., TARASOV R.S., BARBARASH O.L., BARBARASH L.S. THE EFFECT OF MILD COGNITIVE IMPAIRMENT ON EEG TOPOGRAPHIC CHANGES AFTER ON-PUMP CORONARY ARTERY BYPASS GRAFTING. Complex Issues of Cardiovascular Diseases. 2017;(1):37-43. (In Russ.) https://doi.org/10.17802/2306-1278-2017-1-37-43

Просмотров: 132


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)