Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

РОЛЬ МУТАГЕНЕЗА В РАЗВИТИИ АТЕРОСКЛЕРОЗА

https://doi.org/10.17802/2306-1278-2017-1-92-101

Полный текст:

Аннотация

Атеросклероз, развивающийся в результате вызванного дисфункцией эндотелия внутрисосудистого воспаления и клинически проявляющийся ишемической болезнью сердца, острым нарушением мозгового кровообращения и заболеваниями периферических артерий, продолжает оставаться абсолютно ведущей причиной смертности. За последние четыре десятилетия было накоплено достаточно доказательств роли эндогенного и экзогенного мутагенеза в развитии атеросклероза, что позволяет рассматривать это заболевание как в некоторой степени неопластический процесс. В данном обзоре кратко освещены классические работы в этом направлении и описаны основные аргументы, подтверждающие связь мутагенеза и атеросклероза. К наиболее весомым аргументам можно отнести стимулирование развития атеросклероза активными формами кислорода, нарушение регуляции длины теломер при атеросклерозе и ускоренное развитие атеросклероза у пациентов с наследственными синдромами нарушения репарации ДНК, а также у больных, перенесших химиотерапию и лучевую терапию. Кроме того, проанализированы возможные терапевтические применения знаний о роли мутагенеза в развитии атеросклероза; в частности, подчеркнут антимутагенный эффект статинов и ингибиторов ангиотензинпревращающего фермента, что может быть дополнительной причиной их эффективности в терапии клинических осложнений атеросклероза.

Об авторах

А. Г. КУТИХИН
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

650002, г. Кемерово, Сосновый бульвар, д. 6 Тел. +79609077067



М. Ю. СИНИЦКИЙ
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово, Россия


А. В. ПОНАСЕНКО
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово, Россия


Список литературы

1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national agesex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385(9963): 117-171.

2. Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11): e442. 10.1371/journal.pmed.0030442.

3. Barquera S., Pedroza-Tobías A., Medina C., Hernández-Barrera L., Bibbins-Domingo K., Lozano R. et al. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015; 46(5): 328-338.

4. Bloom D., Cafiero E.T., Jane-Llopis E., Abrahams-Gessel S., Bloom L.R., Fathima S. et al. The Global Economic Burden of Noncommunicable Diseases. Geneva: World Economic Forum; 2011.

5. Yurdagul A. Jr., Finney A.C., Woolard M.D., Orr A.W. The arterial microenvironment: the where and why of atherosclerosis. Biochem J. 2016; 473(10): 1281-1295.

6. Bentzon J.F., Otsuka F., Virmani R., Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014; 114(12): 1852-66.

7. Gray K., Bennett M. Role of DNA damage in atherosclerosis--bystander or participant? Biochem Pharmacol. 2011; 82(7): 693-700.

8. Benditt E.P., Benditt J.M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973; 70(6): 1753-1756.

9. Pearson T.A., Dillman J.M., Solex K., Heptinstall R.H. Clonal markers in the study of the origin and growth of human atherosclerotic lesions. Circ Res. 1978; 43(1): 10-18.

10. Weakley S.M., Jiang J., Kougias P., Lin P.H., Yao Q., Brunicardi F.C. et al. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn. 2010; 10(2): 173-185.

11. D'Agostino R.B. Sr., Vasan R.S., Pencina M.J., Wolf P.A., Cobain M., Massaro J.M. et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008; 117(6): 743-753.

12. Andreassi M.G., Piccaluga E., Gargani L., Sabatino L., Borghini A., Faita F. et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2015; 8(4): 616-627.

13. Alshaarawy O., Elbaz H.A., Andrew M.E. The association of urinary polycyclic aromatic hydrocarbon biomarkers and cardiovascular disease in the US population. Environ Int. 2016; 89-90: 174-178.

14. World Cancer Report 2014. Eds.: B.W. Stewart and C.P. Wild. WHO Press, 2014, ISBN: 978-92-832-0443-5.

15. Harrison C.M., Pompilius M., Pinkerton K.E., Ballinger S.W. Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production. Environ Health Perspect. 2011; 119(5): 676-681.

16. Li H., Horke S., Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; 237(1): 208-219.

17. Penn A., Garte S.J., Warren L., Nesta D., Mindich B. Transforming gene in human atherosclerotic plaque DNA. Proc Natl Acad Sci U S A. 1986; 83(20): 7951-7955.

18. Pulliero A., Godschalk R., Andreassi M.G., Curfs D., Van Schooten F.J., Izzotti A. Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health. 2015; 218(3): 293-312.

19. Borghini A., Cervelli T., Galli A., Andreassi M.G. DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis. 2013; 230(2): 202-209.

20. Du Y., Xu X., Chu M., Guo Y., Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016; 8(1): E8-E19.

21. Hazen S.L., Heinecke J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase- catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997; 99(9): 2075-2081.

22. Takeshita J., Byun J., Nhan T.Q., Pritchard D.K., Pennathur S., Schwartz S.M. et al. Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. J Biol Chem. 2006; 281(6): 3096-3104.

23. Martinet W., Knaapen M.W., De Meyer G.R., Herman A.G., Kockx M.M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002; 106(8): 927-932.

24. Binková B., Strejc P., Boubelík O., Stávková Z., Chvátalová I., Srám R.J. DNA adducts and human atherosclerotic lesions. Int J Hyg Environ Health. 2001; 204(1): 49-54.

25. Binková B., Smerhovský Z., Strejc P., Boubelík O., Stávková Z., Chvátalová I. et al. DNAadducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res. 2002; 501(1-2): 115-128.

26. Nair J., De Flora S., Izzotti A., Bartsch H. Lipid peroxidation-derived etheno-DNA adducts in human atherosclerotic lesions. Mutat Res. 2007; 621(1-2): 95-105.

27. De Flora S., Izzotti A., Walsh D., Degan P., Petrilli G.L., Lewtas J. Molecular epidemiology of atherosclerosis. FASEB J. 1997; 11(12): 1021-1031.

28. Izzotti A., Piana A., Minniti G., Vercelli M., Perrone L., De Flora S. Survival of atherosclerotic patients as related to oxidative stress and gene polymorphisms. Mutat Res. 2007; 621(1-2): 119-128.

29. Martinet W., Knaapen M.W., De Meyer G.R., Herman A.G., Kockx M.M. Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ Res. 2001; 88(7): 733-739.

30. Martinet W., de Meyer G.R., Herman A.G, Kockx M.M. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004; 34(5): 323-327.

31. Wang J.C., Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012; 111(2): 245-259.

32. Ishida T., Ishida M., Tashiro S., Yoshizumi M., Kihara Y. Role of DNA damage in cardiovascular disease. Circ J. 2014; 78(1): 42-50.

33. Botto N., Rizza A., Colombo M.G., Mazzone A.M., Manfredi S., Masetti S. et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001; 493(1-2): 23-30.

34. Federici C., Botto N., Manfredi S., Rizza A., Del Fiandra M., Andreassi M.G. Relation of increased chromosomal damage to future adverse cardiac events in patients with known coronary artery disease. Am J Cardiol. 2008; 102(10): 1296-1300.

35. Hatzistamou J., Kiaris H., Ergazaki M., Spandidos D.A. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun. 1996; 225(1): 186-90.

36. Tokunaga O., Satoh T., Yamasaki F., Wu L. Multinucleated variant endothelial cells (MVECs) in human aorta: chromosomal aneuploidy and elevated uptake of LDL. Semin Thromb Hemost. 1998; 24(3): 279-284.

37. Cervelli T., Borghini A., Galli A., Andreassi M.G. DNA damage and repair in atherosclerosis: current insights and future perspectives. Int J Mol Sci. 2012; 13(12): 16929-16944.

38. Matthews C., Gorenne I., Scott S., Figg N., Kirkpatrick P., Ritchie A. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006; 99(2): 156-164.

39. Ogami M., Ikura Y., Ohsawa M., Matsuo T., Kayo S., Yoshimi N. et al. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol. 2004; 24(3): 546-550.

40. Carracedo J., Merino A., Briceño C., Soriano S., Buendía P., Calleros L. et al. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J. 2011; 25(4): 1314-1322.

41. Brouilette S.W., Moore J.S., McMahon A.D., Thompson J.R., Ford I., Shepherd J. et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007; 369(9556): 107-114.

42. Panayiotou A.G., Nicolaides A.N., Griffin M., Tyllis T., Georgiou N., Bond D. et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010; 211(1): 176-181.

43. Willeit P., Willeit J., Brandstätter A., Ehrlenbach S., Mayr A., Gasperi A. et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010; 30(8): 1649-1656.

44. Nzietchueng R., Elfarra M., Nloga J., Labat C., Carteaux J.P., Maureira P. et al. Telomere length in vascular tissues from patients with atherosclerotic disease. J Nutr Health Aging. 2011; 15(2): 153-156.

45. van den Belt-Dusebout A.W., Nuver J., de Wit R., Gietema J.A., ten Bokkel Huinink W.W., Rodrigus P.T. et al. Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol. 2006; 24(3): 467-475.

46. Aleman B.M., van den Belt-Dusebout A.W., De Bruin M.L., van 't Veer M.B., Baaijens M.H., de Boer J.P. et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007; 109(5): 1878- 1886.

47. Shimizu Y., Kodama K., Nishi N., Kasagi F., Suyama A., Soda M. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ. 2010; 340: b5349. doi: 10.1136/bmj.b5349.

48. Yamada M., Naito K., Kasagi F., Masunari N., Suzuki G. Prevalence of atherosclerosis in relation to atomic bomb radiation exposure: an RERF Adult Health Study. Int J Radiat Biol. 2005; 81(11): 821-826.

49. Hayashi T., Kusunoki Y., Hakoda M., Morishita Y., Kubo Y., Maki M. et al. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int J Radiat Biol. 2003; 79(2): 129-136.

50. Van Der Meeren A., Squiban C., Gourmelon P., Lafont H., Gaugler M.H. Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells. Cytokine. 1999; 11(11): 831-838.

51. Stewart F.A., Heeneman S., Te Poele J., Kruse J., Russell N.S., Gijbels M. et al. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol. 2006; 168(2):649-658.

52. Hoving S., Heeneman S., Gijbels M.J., te Poele J.A., Russell N.S., Daemen M.J. et al. Singledose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. Int J Radiat Oncol Biol Phys. 2008; 71(3): 848-857.

53. Ballinger S.W., Patterson C., Knight-Lozano C.A., Burow D.L., Conklin C.A., Hu Z. et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002; 106(5): 544-549.

54. Yu E.P., Bennett M.R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab. 2014; 25(9): 481-487.

55. Sobenin I.A., Chistiakov D.A., Bobryshev Y.V., Postnov A.Y., Orekhov A.N. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des. 2013; 19(33): 5942-5953.

56. Sobenin I.A., Zhelankin A.V., Sinyov V.V., Bobryshev Y.V., Orekhov A.N. Mitochondrial Aging: Focus on Mitochondrial DNA Damage in Atherosclerosis - A Mini-Review. Gerontology. 2015; 61(4): 343-349.

57. Mercer J.R., Cheng K.K., Figg N., Gorenne I., Mahmoudi M., Griffin J. et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010; 107(8): 1021-1031.

58. Wang Y., Wang G.Z., Rabinovitch P.S., Tabas I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κBmediated inflammation in macrophages. Circ Res. 2014; 114(3): 421-433.

59. Yu E., Calvert P.A., Mercer J.R., Harrison J., Baker L., Figg N.L. et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013; 128(7): 702-712.

60. Pogribny I.P., Beland F.A. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009; 66(14): 2249-2261.

61. Lund G., Andersson L., Lauria M., Lindholm M., Fraga M.F., Villar-Garea A. et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004; 279(28): 29147-29154.

62. Chan G.C., Fish J.E., Mawji I.A., Leung D.D., Rachlis A.C., Marsden P.A. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol. 2005; 175(6): 3846-3861.

63. Laukkanen M.O., Mannermaa S., Hiltunen M.O., Aittomäki S., Airenne K., Jänne J. et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol. 1999; 19(9): 2171-2178.

64. Malik Q., Herbert K.E. Oxidative and nonoxidative DNA damage and cardiovascular disease. Free Radic Res. 2012; 46(4): 554-564.

65. Milic M., Frustaci A., Del Bufalo A., Sánchez-Alarcón J., Valencia-Quintana R., Russo P. et al. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. Mutat Res. 2015; 776: 118-127.

66. Shah N.R., Mahmoudi M. The role of DNA damage and repair in atherosclerosis: A review. J Mol Cell Cardiol. 2015; 86: 147-157.

67. Martínez-González J., Badimon L. Influence of statin use on endothelial function: from bench to clinics. Curr Pharm Des. 2007; 13(17): 1771-1786.

68. Harangi M., Seres I., Varga Z., Emri G., Szilvássy Z., Paragh G. et al. Atorvastatin effect on high-density lipoprotein-associated paraoxonase activity and oxidative DNA damage. Eur J Clin Pharmacol. 2004; 60(10): 685-691.

69. Ostrau C., Hülsenbeck J., Herzog M., Schad A., Torzewski M., Lackner K.J. et al. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 2009; 92(3): 492- 499.

70. Mahmoudi M., Gorenne I., Mercer J., Figg N., Littlewood T., Bennett M. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008; 103(7): 717-725.

71. Manfredini V., Biancini G.B., Vanzin C.S., Dal Vesco A.M., Cipriani F., Biasi L. et al. Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct. 2010; 28(5): 360-366.

72. Pernice F., Floccari F., Caccamo C., Belghity N., Mantuano S., Pacilè M.E. et al. Chromosomal damage and atherosclerosis. A protective effect from simvastatin. Eur J Pharmacol. 2006; 532(3): 223-229.

73. Tousoulis D., Psaltopoulou T., Androulakis E., Papageorgiou N., Papaioannou S., Oikonomou E. et al. Oxidative stress and early atherosclerosis: novel antioxidant treatment. Cardiovasc Drugs Ther. 2015; 29(1): 75-88.

74. Herbert K.E., Mistry Y., Hastings R., Poolman T., Niklason L., Williams B. Angiotensin IImediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008; 102(2): 201-208.

75. Oeseburg H., Iusuf D., van der Harst P., van Gilst W.H., Henning R.H., Roks A.J. Bradykinin protects against oxidative stress-induced endothelial cell senescence. Hypertension. 2009; 53(2): 417-422.

76. Pechter U., Aunapuu M., Riispere Z., Vihalemm T., Kullissaar T., Zilmer K. et al. Oxidative stress status in kidney tissue after losartan and atenolol treatment in experimental renal failure. Nephron Exp Nephrol. 2004; 97(2): e33-37.

77. Khaper N., Singal P.K. Modulation of oxidative stress by a selective inhibition of angiotensin II type 1 receptors in MI rats. J Am Coll Cardiol. 2001; 37(5): 1461-1466.

78. Fiordaliso F., Cuccovillo I., Bianchi R., Bai A., Doni M., Salio M. et al. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci. 2006; 79(2): 121-129.


Для цитирования:


КУТИХИН А.Г., СИНИЦКИЙ М.Ю., ПОНАСЕНКО А.В. РОЛЬ МУТАГЕНЕЗА В РАЗВИТИИ АТЕРОСКЛЕРОЗА. Комплексные проблемы сердечно-сосудистых заболеваний. 2017;(1):92-101. https://doi.org/10.17802/2306-1278-2017-1-92-101

For citation:


KUTIKHIN A.G., SINITSKY M.Y., PONASENKO A.V. THE ROLE OF MUTAGENESIS IN ATHEROSCLEROSIS. Complex Issues of Cardiovascular Diseases. 2017;(1):92-101. (In Russ.) https://doi.org/10.17802/2306-1278-2017-1-92-101

Просмотров: 124


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)