TRANSRADIAL AND TRANSFEMORAL ACCESS FOR CAROTID ARTERY STENTING WITH AN EMPHASIS ON THE DETECTION OF MICROEMBOLIZATION WITH DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING (TACTILE TRIAL).
https://doi.org/10.17802/2306-1278-2018-7-3-83-93
Abstract
Aim. To compare transradial (TR) and transfemoral (TF) approach for carotid artery stenting (CAS) with an emphasis on the detection of micro-embolization with diffusion-weighted magnetic resonance imaging (DW-MRI).
Methods. 96 patients were included in the study in the period from January 2015 to October 2017 with further randomized 1 : 1 to the TR and TF groups. The inclusion criteria were the following: symptomatic stenosis ICA >70%; or asymptomatic stenosis ICA >80%. The positive history of stroke, myocardial infarction or open heart surgery <1 month were the exclusion criteria for the study. The primary endpoint was the incidence of new cerebral ischemic lesions as assessed by DW-MRI. All CAS procedures were performed by two experienced operators according to the approved protocol.
Results. Procedural success with TR approach was 46 (96%) versus 48 (100%) with TF approach (p = 0.495). Crossover rate was 4% in the TR group. The rate of primary endpoint in the TR and TF groups was 50 and 52%, respectively. The absolute risk difference was -2% (95% CI [-0.21, 0.17], p (non-inferiority) = 0.03). An «on-treatment» analysis revealed a tendency towards a reduced microembolic foci when intervening on the right ICA via TR approach compared to TF (44% vs. 68%, p = 0.478), and a reverse trend when intervening on the left ICA via TR compared to TF approach (57% versus 36%, respectively, p = 0.437).
Conclusion. Carotid stenting via transradial approach is noninferior for cerebral embolism to transfemoral approach. The rates of MACCE and vascular complications were similar in both groups. There was no significant difference in the procedural success rate in the transfemoral and transradial groups. The fluoroscopy time during transradial carotid stenting was higher in comparison with transfemoral carotid stenting, though the procedure duration was similar in both groups.
About the Authors
D. U. MalaevRussian Federation
Malaev Dastan U., interventional cardiologist, PhD student. 15, Rechkunovskaya Street, Novosibirsk, 630055.
E. I. Kretov
Russian Federation
Kretov Evgeniy I., MD, PhD, leading researcher at the Center for Interventional Cardiology, interventional cardiologist.
15, Rechkunovskaya Street, Novosibirsk, 630055.
V. I. Baystrukov
Russian Federation
Baystrukov Vitaliy I., PhD, interventional cardiologist.
15, Rechkunovskaya Street, Novosibirsk, 630055.
R. A. Naidenov
Russian Federation
Naidenov Roman A., PhD, interventional cardiologist.
15, Rechkunovskaya Street, Novosibirsk, 630055.
A. A. Prokhorikhin
Russian Federation
Prokhorikhin Alexey A., interventional cardiologist, PhD student.
15, Rechkunovskaya Street, Novosibirsk, 630055.
A. A. Boykov
Russian Federation
Boykov Andrey A., interventional cardiologist, PhD student .
15, Rechkunovskaya Street, Novosibirsk, 630055.
References
1. Kerber C.W., Cromwell L.D., Loehden O.L. Catheter dilatation of proximal carotid stenosis during distal bifurcation endarterectomy, Am J Neuroradiol 1980; 1:348-9.
2. Silver F.L., Mackey A., Clark W.M., Brooks W., Timaran C.H., Chiu D. et al, Safety of stenting and endarterectomy by symptomatic status in the Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST). Stroke. 2011; 42:675–80. doi: 10.1161/STROKEAHA.110.610212.
3. International Carotid Stenting Study investigators, Ederle J., Dobson J., Featherstone R.L., Bonati L.H., van der Worp H.B., de Borst G.J. et al, Carotid artery stenting compared with endarter- ectomy in patients with symptomatic carotid stenosis (International Carotid Stenting Study): an interim analysis of a randomised controlled trial. Lancet. 2010; 375:985–97. doi: 10.1016/S0140-6736(10)60239-5
4. Ferrante G., Rao S.V., Juni O., Da Costa B.R., Reimers B., Condorelli G. et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. JACC Cardiovasc Interv. 2016; 9:14-19. doi: 10.1016/j. jcin.2016.04.014.
5. Pinter L., Cagiannos C., Ruzsa Z., Bakoyiannis C., Kolvenbach R. Report on initial experience with transradial access for carotid artery stenting. J Vasc Surg. 2007; 45:113641. DOI: 10.1016/j.jvs.2007.02.035
6. Etxegoien N., Rhyne D., Kedev S., Sachar R., Mann T. The transradial approach for carotid artery stenting. Catheter Cardiovasc Interv. 2012; 80:1081-7. DOI: 10.1002/ccd.24503.
7. Patel T., Shah S., Ranjan A., Malhotra H., Pancholy S., Coppola J. Contralateral transradial approach for carotid artery stenting: a feasibility study. Catheter Cardiovasc Interv. 2010; 75:268-75. oi: 10.1002/ccd.22159.
8. Ruzsa Z., Nemes B., Pintér L., Berta B., Tóth K., Teleki B. et al. A randomised comparison of transradial and transfemoral approach for carotid artery stenting: RADCAR (RADial access for CARotid artery stenting) study. EuroIntervention.2014;10(3):381–391. doi: 10.4244/EIJV10I3A64.
9. Oren O., Oren M., Turgeman Y. Transradial versus Transfemoral Approach in Peripheral Arterial Interventions. Int J Angiol. 2016 Sep; 25(3):148-52. doi: 10.1055/s-0035-1563607
10. Mendiz O.A., Fava C., Lev G., Caponi G., Valdivieso L. Transradial Versus Transfemoral Carotid Artery Stenting: A 16-Year Single-Center Experience.J Interv Cardiol. 2016 Dec;29(6):588-593 doi: 10.1111/joic.12342
11. Bonati L.H., Jongen L.M., Haller S., Flach H.Z., Dobson J., Nederkoorn P.J. et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS) Lancet Neurol 2010; 9: 353–62. doi: 10.1016/S14744422(10)70057-0.
12. Tedesco M.M., Lee J.T., Dalman R.L., Lane B., Loh C., Haukoos J.S., Rapp J.H., Coogan S.M. Postprocedural microembolic events following carotid surgery and carotid angioplasty and stenting. J Vasc Surg. 2007 Aug; 46(2):244-50. DOI: 10.1016/j.jvs.2007.04.049
13. Jones S.C., Perez-Trepichio A.D., Xue M., Furlan A.J., Awad I.A. Magnetic resonance diffusion-weighted imaging: sensitivity and apparent diffusion constant in stroke. Acta Neurochir Suppl (Wien). 1994; 60: 207-210.
14. Urbach H., Flacke S., Keller E., Textor J., Berlis A., Hartmann A., Reul J., Solymosi L., Schild H.H. Detectability and detection rate of acute cerebral hemisphere infarcts on CT and diffusion-weighted MRI. Neuroradiology. 2000; 42 (10): 722-727.
15. McDonnell C.O., Fearn S.J., Baker S.R., Goodman M.A., Price D., Lawrence-Brown M.M. Value of Diffusionweighted MRI During Carotid Angioplasty and Stenting. Eur J Vasc Endovasc Surg. 2006; 32 (1): 46–50. (2006) DOI: 10.1016/j.ejvs.2005.12.026
16. Rao A.K., Pratt C., Berke A., Jaffe A., Ockene I., Schreiber T.L. et al. Thrombolysis in Myocardial Infarction (TIMI) trial—phase I: hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treated with recombinant tissue plasminogen activator and streptoki- nase. J Am Coll Cardiol. 1988; 11:1–11.
17. Kiemeneij F., Laarman G.J., deMelker E., Transradial artery coronary angioplasty. Am Heart J 1995;129(1):1–7.
18. Kiemeneij F., Laarman G.J. Percutaneous transradial artery approach for coronary Palmaz-Schatz stent implantation. Am Heart J. 1994;128(1):167–174.
19. Ludwig J., Achenbach S., Daniel W.G., Arnold M. The transradial approach, An increasingly used standard for coronary diagnosis and interventions. Herz. 2011;36(5):386–395.
20. Cooper C.J., El-Shiekh R.A., Cohen D.J., Blaesing L., Burket M.W., Basu A., Moore J.A. Effect of transradial access on quality of life and cost of cardiac catheterization: A randomized comparison. Am Heart J. 1999;138(3 Pt 1):430–436.
21. Schlüter M., Tübler T., Steffens J.C., Mathey D.G., Schofer J. Focal ischemia of the brain after neuroprotected carotid artery stenting. J Am Coll Cardiol. 2003; 42:1007–13.
22. Lovblad K.O., Pluschke W., Remonda L., GruberWiest D., Do D.D., Barth A. et al. Diffusion-weighted MRI for monitoring neurovascular interventions. Neuroradiology. 2000; 42:134 – 8.
23. Jaeger H.J., Mathias K.D., Hauth E., Drescher R., Gissler H.M., Hennigs S., Christmann A. Cerebral ischemia detected with diffusion-weighted MR imaging after stent implantation in the carotid artery. AJNR Am J Neuroradiol. 2002; 23:200–7.
24. Warach S., Gaa J., Siewert B.,Wielopolski P., Edelman R.R. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995; 37:231-41.
25. Bendszus M., Koltzenburg M., Burger R., WarmuthMetz M., Hofman E. ,Solymosi L. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet. 1999; 354:1594-7.
26. Neumann-Haefelin T., Moseley M.E., Albers G.W. New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Ann Neurol. 2000;47: 559–70.
27. Bijuklic K., Wandler A., Hazizi F., Schofer J. The PROFI Study (Prevention of Cerebral Embolization by Proximal Balloon Occlusion Compared to Filter Protection During Carotid Artery Stenting) A Prospective Randomized Trial Send. J Am Coll Cardiol. 2012 Apr 10;59(15):1383-9. doi: 10.1016/j.jacc.2011.11.035.
28. Willinsky R.A., Taylor S.M., TerBrugge K., Farb R.I., Tomlinson G., Montanera W. Neurologic complications of cerebral angiography: Prospective analysis of 2899 procedures and review of the literature. Radiology. 2003; 227: 522–5228. DOI: 10.1148/radiol.2272012071
29. Bijuklic K., Wandler A., Tubler T., Schofer J. Impact of asymptomatic cerebral lesions in diffusion-weighted magnetic resonance imaging after carotid artery stenting. J Am Coll Cardiol Intv. 2013; 6:394–8. doi: 10.1016/j.jcin.2012.10.019.
30. Kim H.J., Lee H.J., Yang J.H., , Yeo I.S., Yi J.S., Lee I.W. et al, The influence of carotid artery catheterization technique on the incidence of thromboembolism during carotid artery stenting. Am J Neuroradiol. 2010; 31: 1732–1736. doi: 10.3174/ajnr.A2141.
31. Vermeer S.E., Prins N.D., den Heijer T., Hofman A., Koudstaal P.J., Breteler M.M., Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003; 348:1215-22.
32. Lund C., Nes R.B., Ugelstad T.P. Cerebral emboli during left heart catheterization may cause acute brain injury. Eur Heart J. 2005; 26: 1269–1275.
33. Knipp S.C., Matatko N., Wilhelm H., Schlamann M., Massoudy P., Forsting M., Diener H.C., Jakob H. Evaluation of brain injury after coronary artery bypass grafting, A prospective study using neuropsychological assessment and diffusion weighted magnetic resonance imaging. Eur J Cardio-Thoracic Surg. 2004; 25: 791–800. DOI: 10.1016/j.ejcts.2004.02.012
34. Gensicke H., Van der Worp H.B., Nederkoorn P.J., Macdonald S., Gaines P.A., van der Lugt A. et al, Ischemic brain lesions after carotid artery stenting increase future cerebrovascular risk. J Am Coll Cardiol. 2015; 65: 521–529. doi: 10.1016/j.jacc.2014.11.038.
Review
For citations:
Malaev D.U., Kretov E.I., Baystrukov V.I., Naidenov R.A., Prokhorikhin A.A., Boykov A.A. TRANSRADIAL AND TRANSFEMORAL ACCESS FOR CAROTID ARTERY STENTING WITH AN EMPHASIS ON THE DETECTION OF MICROEMBOLIZATION WITH DIFFUSION WEIGHTED MAGNETIC RESONANCE IMAGING (TACTILE TRIAL). Complex Issues of Cardiovascular Diseases. 2018;7(3):83-93. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-3-83-93