POLYCAPROLACTONE SCAFFOLDS CONTAINING VEGF FOR ANGIOGENESIS STIMULATION
https://doi.org/10.17802/2306-1278-2013-4-28-34
Abstract
Purpose. To evaluate the local angiogenesis stimulation by polycaprolactone (PCL) scaffolds with VEGF in vivo.
Materials and methods. PCL scaffolds were fabricated using electrospinning method. For the encapsulation of VEGF into PCL scaffold a two phase electrospinning was used. The scaffolds structure was examined by scanning electron microscopy. Growth factor release dynamic was assessed by ELISA. For evaluation of biological properties, the PCL and PCL+VEGF scaffolds were implanted in Wistar rat abdominal wall (n=60) for 2, 3 and 4 monthsT. he explanted samples were examined by histological and immunoishtochemical analyses.
Results. The study showed that PCL fiber diameters in the scaffolds have changed after VEGF encapsulation. Moreover, long-term controlled release of growth factor was demonstrated. In addition, we have also shown the preservation of PCL+VEGF scaffolds biological activity; this was evidenced by increase of the number of capillaries on scaffolds with VEGF compared to control samples after implantation in rats.
Conclusion. This study showed that the PCL scaffold with VEGF has pro-angiogenic potential in comparison with pure scaffolds and can potentially be used for the tissue engineering in vivo.
About the Authors
V. V. SevostyanovaRussian Federation
junior research associate of cellular technologies laboratory of FSBI RI for CICVD, SB RAMS, 6, Sosnoviy blvd., Kemerovo, 650002, Tel.: +7 (3842) 64-46-50
G. Yu. Vasukov
Russian Federation
V. V. Borisov
Russian Federation
A. Yu. Burago
Russian Federation
Yu. N. Formokidova
Russian Federation
A. S. Golovkin
Russian Federation
References
1. Anderson J. M., Rodriguez A., Chang D. T. Foreign body reaction to biomaterials // Seminars in Immunology. 2008. Vol. 20(2). P. 86–100.
2. Acute thrombogenicity and 4 weeks healing properties of a new stretch-ePTFE graft / H. Parsson [et al.] // European Journal of Vascular Surgery. 1993. Vol. 7(1). P. 63–70.
3. Lee K., Silva E. A., Mooney D. J. Growth factor deliverybased tissue engineering: general approaches and a review of recent developments // J. R. Soc. Interface. 2011. Vol. 8. P. 153–170.
4. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy / S. Shinkaruk [et al.] // Curr. Med. Chem. Anticancer Agents. 2003. Vol. 3. P. 95–117.
5. Han K., Choi M., Chung Y. Site-specific degradation and transport of recombinant human epidermal growth factor (rhEGF) in the rat gastrointestinal mucosa // Int. J. Pharm. 1998. Vol. 168. P. 189–197.
6. Bastian S. E., Walton P. E., Belford D. A. Transport of circulating IGF-I and LR3IGF-I from blood to extracellular wound fluid sites in rats // J. Endocrinol. 2000. Vol. 164. P. 77–86.
7. Enhancement of bone ingrowth by transforming growth factor-β / D. R. Sumner [et al.] // J. Bone Joint Surg. 1995. Vol. 77A. P. 1135–1147.
8. Rao S. V., Anderson K. W., Bachas L. G. Oriented immobilization of proteins // Microchimica Acta. 1998. Vol. 128(3). P. 127–143.
9. Ikada Y. Surface modification of polymers for medical applications // Biomaterials. 1994. Vol. 15(10). P. 725–736.
10. Sharon J. L., Puleo D. A., Immobilization of glycoproteins, such as VEGF, on biodegradable substrates // Acta Biomaterialia. 2008. Vol. 4(4). P. 1016–1023.
11. Greisler H. P. Growth factor release from vascular grafts // Journal of Controlled Release. 1996. Vol. 39(2–3). P. 267–280.
12. In vitro release of dexamethasone or bFGF from chitosan/ hydroxyapatite scaffolds / R. S. Tigli [et al.] // Journal of Biomaterials Science, Polymer Edition. 2009. Vol. 20(13). P. 1899–1914.
13. Sahoo R., Sahoo S., Nayak P. Synthesis and characterization of polycaprolactone – gelatin nanocomposites for control release anticancer drug paclitaxel // European Journal of Scientific Research. 2011. Vol. 48(3). P. 527–537.
14. Electrospun biphasic drug release polyvinylpyrrolidone/ ethyl cellulose core/sheath nanofibers / D. G. Yu [et al.] // Acta Biomaterialia. 2013. Vol. 9. P. 5665–5672.
15. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer // Oncology. 2005. Vol. 69. P. 4–10.
16. Свойства тканеинженерных матриц из поликапролактона, импрегнированных ростовыми факторами VEGF и bFGF / В. В. Севостьянова [и др.] // Клеточная трансплантология и тканевая инженерия. 2012. Т. 7, № 4. С. 62–67.
17. An introduction to electrospinning and nanofibers / S. Ramakrishna [et al.]. Singapore: World Scientific, 2005. 382 p.
18. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF / G. C. Hughes [et al.] // Ann. Thorac. Surg. 2004. Vol. 77. P. 812–818.
19. Attanasio S., Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review // Cardiol. Rev. 2009. Vol. 17. P. 115–120.
20. Polymer carriers for drug delivery in tissue engineering / M. Sokolsky-Papkov [et al.] // Advanced Drug Delivery Reviews. 2007. Vol. 59. P. 187–206.
Review
For citations:
Sevostyanova V.V., Vasukov G.Yu., Borisov V.V., Burago A.Yu., Formokidova Yu.N., Golovkin A.S. POLYCAPROLACTONE SCAFFOLDS CONTAINING VEGF FOR ANGIOGENESIS STIMULATION. Complex Issues of Cardiovascular Diseases. 2013;(4):28-34. (In Russ.) https://doi.org/10.17802/2306-1278-2013-4-28-34