Variability of mitochondrial DNA in the development of atherosclerosis and myocardial infarction (a review)
https://doi.org/10.17802/2306-1278-2018-7-4S-75-85
Abstract
The article discusses key issues on the relationship between the qualitative and quantitative characteristics of mtDNA and the risks of atherosclerosis and myocardial infarction. Russian and international research literature was analyzed regarding point and deletion mutations in mtDNA, including heteroplasmy, related to the risks of developing cardiovascular diseases and acute cardiovascular events. The review also discusses the relationship between cardiovascular events and oxidative stress severity, the number of intracellular and free-circulating mtDNA copies.
About the Authors
A. V. PonasenkoRussian Federation
Ponasenko Anastasia V. - PhD, Head of the Laboratory of Genomic Medicine, Department of Experimental and Clinical Cardiology.
6, Sosnoviy Blvd., Kemerovo, 650002
Competing Interests: Нет конфликта интересов
A. V. Tsepokina
Russian Federation
Tsepokina Anna V. - researcher assistant, Laboratory of Genomic Medicine, Department of Experimental and Clinical Cardiology.
6, Sosnoviy Blvd., Kemerovo, 650002
Competing Interests: Нет конфликта интересов
B. A. Tkhorenko
Russian Federation
Tkhorenko Boris A. - assistant at the Laboratory of Genomic Medicine, Department of Experimental and Clinical Cardiology.
6, Sosnoviy Blvd., Kemerovo, 650002
Competing Interests: Нет конфликта интересов
M. V. Golubenko
Russian Federation
Golubenko Maria V. - PhD, senior researcher at the Laboratory of Population Genetics.
10, Ushaika embankment, Tomsk, 634050
Competing Interests: Нет конфликта интересов
E. K. Gubieva
Russian Federation
Gubieva Ekaterina K. - a student at the Institute of Biology, Ecology and Natural Resources.
6, Krasnaya street, Kemerovo, 650000
Competing Interests: Нет конфликта интересов
L. P. Trephilova
Russian Federation
Trefilova Lyudmila P. - a student at the Institute of Biology, Ecology and Natural Resources.
6, Krasnaya street, Kemerovo, 650000
Competing Interests: Нет конфликта интересов
References
1. Makeeva O.A., Sleptsov A.A. , Kulish E.V., Barbarash O.L., Mazur A.M. , Prokhorchuk E.B. , Chekanov N.N., Stepanov V.A., Puzyrev V.P. Genomic Study of Cardiovascular Continuum Comorbidity. ActaNaturae. 2015:3 (26);99-110. (In Russian)
2. Hernández-Reséndiz S., Buelna-Chontal M., Correa F., Zazueta C. Targeting mitochondria for cardiac protection .Curr Drug Targets. 2014; 14 (5): 586-600.
3. Sudakov N.P., Nikiforov S.B., Konstantinov Y.M., Yakubov L.A., Novikova N.A., Karamysheva A.N. The mechanisms of mitohondria participation in development of different pathologic processes associated with ischemia and reperfusion. Acta Biomedica Scientifica. 2006; 5 (51): 332-336.(In Russian)
4. Boovarahan S.R., Kurian G.A. Mitochondrial dysfunction: a key player in the pathogenesis of cardiovascular diseases linked to air pollution. Rev Environ Health. 2018; 33(2): 111-122. doi: 10.1515/reveh-2017-002
5. Phosri A., Ueda K., Phung V.L.H., Tawatsupa B., Honda A., Takano H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci Total Environ. 2019; 651(1):1144-1153. doi: 10.1016/j.scitotenv.2018.09.183.
6. Tabakaev M.V., Vlasenko A.E., Naumova S.A., Artamonova G.V. Approaches to the evaluation of the environmental influence on cardiovascular pathology among urban population. Complex Issues of Cardiovascular Diseases. 2015;(4):61-66. doi:https:// doi.org/10.17802/2306-1278-2015-4-61-66 (In Russian)
7. Guo Y., Ma Y., Ji J., Liu N., Zhou G., Fang D., Huang G., Lan T., Peng C., Yu S. The relationship between extreme temperature and emergency incidences: a time series analysis in Shenzhen, China. Environ Sci Pollut Res Int. 2018. doi: 10.1007/s11356-018-3426-8
8. Byun H.M., Panni T., Motta V., Hou L., Nordio F., Apostoli P., Bertazzi P.A., Baccarelli A.A. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 2013; 10:18. doi: 10.1186/1743-8977-10-18.
9. Byun H.M., Colicino E., Trevisi L., Fan T., Christiani D.C., Baccarelli A.A. Effects of Air Pollution and Blood Mitochondrial DNA Methylation on Markers of Heart Rate Variability. J Am Heart Assoc. 2016; (4): e003218. doi:10.1161/JAHA.116.003218.
10. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H.L., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J.H., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290 (5806): 457-465.
11. Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999; 23 (2): 147. doi.org/10.1038/13779
12. Ohtake A., Murayama K., Mori M., Harashima H., Yamazaki T., Tamaru S., Yamashita Y., Kishita Y., Nakachi Y., Kohda M., Tokuzawa Y., Mizuno Y., Moriyama Y., Kato H., Okazaki Y. Diagnosis and molecular basis of mitochondrial respiratory chain disorders: Exome sequencing for disease gene identification. Biochimica et Biophysica Acta. 2014; 1840: 1355–1359. doi.org/10.1016/j.bbagen.2014.01.025
13. Bogenhagen D. F. Repair of mtDNA in Vertebrates. Am. J. Hum. Genet. 1999; 64: 1276–1281. doi:10.1086/302392
14. Sobenin I.A., Mitrofanov K.Y., Zhelankin A.V., Sazonova M.A., Postnov A.Y., Revin V.V. , Bobryshev Y.V., Orekhov A.N. Quantitative assessment of heteroplasmy of mitochondrial genome : perspectives in diagnostics and methodological pitfalls. .BioMed Research International. 2014; 2014:292017. doi: 10.1155/2014/292017.
15. Alexeyev М., Shokolenko I., Wilson G., LeDoux S. The Maintenance of Mitochondrial DNA Integrity-Critical Analysis and Update. Cold Spring Harb Perspect Biol. 2013;5: a012641. doi: 10.1101/cshperspect.a012641.
16. Voropayeva E.N., Maksimov V.N., Malyutina S.K., Bobak M., Voevoda M.I. Review on properties and methods of mitochondrial DNA research. Journal of Siberian Medical Sciences. 2016;3: 8. (In Russian)
17. Schaefer A.M., Taylor R.W., Turnbull D.M., Chinnery P.F. The epidemiology of mitochondrial disorders — past, present and future. Biochim Biophys Acta. 2004; 1659(2–3):115–120.
18. Taylor R.W., Turnbull D.M. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6 (5):389–402.
19. Guo Y., Li C.I., Sheng Q., Winther J.F., Cai Q., Boice J.D., Shyr Y. Very low-level heteroplasmy mtDNA variations are inherited in humans. J Genet Genomics. 2013; 40(12):607-615. doi: 10.1016/j.jgg.2013.10.003.
20. Litvinova N.A., Voronkova A.S., Nikolaeva E.A., Sukhorukov V.S. Tissue-specific features of mitochondrial DNA polymorphisms. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2015;60(5):76-78. (In Russian)
21. Chicherin I.V., Levitsky S.A., Krasheninnikov I.A., Tarassov I, Kamenski P. The prospects of gene therapy for mitochondrial diseases: can’t we do without CRISPR/ CAS9? Bulletin of RSMU. 2017;3:46-51 doi: 10.24075/brsmu.2017-03-05 (In Russian)
22. Torregrosa-Muñumer R., Goffart S., Haikonen J.A., Pohjoismäki J.L. Low doses of ultraviolet radiationand oxidative damage induced ramaticac cumulation of mitochondrial DNA replication intermediates, forkregression, andreplication initiationshift. MolBiolCell.2015;26(23):4197-4208. doi: 10.1091/mbc.E15-06-0390.
23. Ismail M.K., Samera M.Y., Abid S.K. Oxidative stress markers and antioxidant activity in patients admitted to Intensive Care Unit with acute myocardial infarction. Int J Health Sci (Qassim). 2018;12(5):14-19.
24. Smirnova L.A., Khasanova Z.B., Ezhov M.V., Polevaya T.Y., Matchin Y.G., Balakhonova T.V., Sobenin I.A., Postnov A.Y. Association of mutations in the mitochondrial genome with coronary and carotid atherosclerotic lesions. The Clinician. 2014;8(1):34-41. (In Russian) https://doi.org/10.17650/1818-8338-2014-1-34-41.
25. Hefti E., Blanco J.G. Mitochondrial DNA heteroplasmy in cardiac tissue from individuals with and without coronary artery disease. Mitochondrial DNA A DNA Mapp Seq Anal.2018; 29(4):587-593.doi: 10.1080/24701394.2017.1325480
26. Golubenko M.V., Nazarenko M.S., Frolov A.V., Sleptsov A.A., Markov A.V., Glushkova M.E., Barbarash O.L., Puzyrev V.P. Analysis of Heteroplasmy in the Major Noncoding Region of Mitochondrial DNA in the Blood and Atherosclerotic Plaques of Carotid Arteries. Russian Journal of Genetics. 2016;52(4):436– 440]. DOI: 10.7868/S0016675816040044 (in Russian)
27. Rad R.G., Saleh S.K., Kouchaksaraei A.S., Houshmand M., Salehi A., Arabgari F. Association of Mitochondrial T16519C polymorphism with Coronary Artery Disease (CAD) in Iranian patients underwent coronary angiography. International Journal of Medical Research and Health Sciences. 2016;5(9):132-145.
28. Takagi K., Yamada Y., Gong J.S., Sone T., Yokota M., Tanaka M. Associationofa 5178 C>A (Leu237Met) polymorphism in the mitochondrial DNA with al ow prevalence of myocardial infarctionin Japanese individuals. Atherosclerosis. 2004;175(2):281-286. doi: 10.1016/j.atherosclerosis.2004.03.008
29. Pang S., Huang J., Cui Y., Yan B. Genetic and Functional Sequence Variants of the SIRT3 Gene Promoter in Myocardial Infarction. PLoS One. 2016;11(4):e0153815. doi: 10.1371/journal.pone.0153815
30. Mercer J.R., Cheng K.K., Figg N., Gorenne I., Mahmoudi M., Griffin J., Vidal-Puig A., Logan A., Murphy M.P., Bennett M. DNA damage links mitochondrial dysfunction to athero sclerosis and the metabolic syndrome. CircRes. 2010; 107(8):1021–1031. doi: 10.1161/CIRCRESAHA.110.218966
31. Fetterman J.L., Holbrook M., Westbrook D. G., Brown J. A., Feeley K. P., Bretón-Romero R., Hamburg, N. M. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease. CardiovascularDiabetology.2016; 15(1):53. doi:10.1186/s12933-016-0372-y
32. Botto N., Berti S., Manfredi S., Al-Jabri A., Federici C., Clerico A., Andreassi M.G. Detection of mtDNA with 4977bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis. 2005; 570(1):81-88. doi:10.1016/j.mrfmmm.2004.10.003
33. Vecoli C., Borghini A., Pulignani S., Mercuri A., Turchi S., Carpeggiani C., Picano E., Andreassi M.G. Prognostic value of mitochondrial DNA4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease. Atherosclerosis. 2018; 276:91-97 doi.org/10.1016/j.atherosclerosis.2018.07.015
34. Abu-Amero K.K., Al-Boudari O.M., Mousa A., Gonzalez A.M., Larruga J.M., Cabrera V.M., Dzimiri N. The mitochondrial DNA variant 16189T>C is associated with coronary artery disease and myocardial infarction in Saudi Arabs. Genet Test Mol Biomarkers.2010;14(1):43-47. doi: 10.1089/gtmb.2009.0095
35. Mueller E.E., Eder W., Ebner S., Schwaiger E., Santic D., Kreindl T., Stanger O., Paulweber B., Iglseder B., Oberkofler H., Maier R., Mayr J.A., Krempler F., Weitgasser R., Patsch W., Sperl W., Kofler B. The mitochondrial T16189C polymorphism is associated with coronary artery disease in Middle. European populations. PLoS ONE. 2011; 6(1): e16455. doi: 10.1371/journal.pone.0016455
36. Nishigaki Y., Yamada Y., Fuku N., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Yamaguchi S., Nozawa Y., Tanaka M. Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males. Hum Genet. 2007; 120(6):827-836. doi: 10.1007/s00439-006-0269-z.
37. Sawabe M., Tanaka M., Chida K., Arai T., Nishigaki Y., Fuku N., Mieno M.N., Kuchiba A., Tanaka N. Mitochondrial haplogroups A and M7a confer a genetic risk for coronary atherosclerosis in the Japanese elderly: an autopsy study of 1,536 patients. J AtherosclerThromb. 2011;18(2):166-75 https://doi.org/10.5551/jat.6742
38. Bilal E., Rabadan R., Alexe G., Fuku N., Ueno H., Nishigaki Y., Fujita Y., Ito M., Arai Y., Hirose N., Ruckenstein A., Bhanot G., Tanaka M. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS ONE. 2008;3(6): e2421. doi: 10.1371/journal.pone.0002421
39. Palacín M., Alvarez V., Martín M., Díaz M., Corao A.I., Alonso B., Díaz-Molina B., Lozano I., Avanzas P., Morís C., Reguero J.R., Rodríguez I., López-Larrea C., Cannata-Andía J., Batalla A., Ruiz-Ortega M., Martínez-Camblor P., Coto E. Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: evidence for an association to haplogroup H. Mitochondrion. 2011;11(1):176-181. doi: 10.1016/j.mito.2010.09.004
40. M.V. Golubenko, R.R. Salakhov, O.A. Makeeva, I.A. Goncharova, V.V. Kashtalap, O.L. Barbarash, V.P. Puzyrev Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis. Molecular Biology. 2015;49(6): 968-977 doi: 10.7868/S0026898415050080 (In Russian).
41. Palacin M., Alvarez V., Martin M., Diaz M., Corao A.I., Alonso B., Díaz-Molina B., Lozano I., Avanzas P., Morís C., Reguero J.R., Rodríguez I., López-Larrea C., Cannata-Andía J., Batalla A., Ruiz-Ortega M., Martínez-Camblor P., Coto E. Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: Evidence for an association to haplogroup H. Mitochondrion. 2011; 11(1):176–181. doi:10.1016/j.mito.2010.09.004
42. Kazachkova N., Ramos A., Santos C., Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Аging and disease. 2013; 4(6): 337–350. doi: 10.14336/AD.2013.0400337
43. Frahm Т., Mohamed S.A., Bruse P., Gemünd C., Oehmichen M., Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mechanisms of ageing and development. 2005;126:1192–1200.
44. Liu L-P., Cheng K., Ning M-A., Li H-H., Wang H-C., Li F., Chen S-Y., Qu F-L., Guo W-Y. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis.2017; 261:105-110. doi: 10.1016/j.atherosclerosis.2017.02.013
45. Zhang Y, Guallar E., Ashar F.N., Longchamps R.J., Castellani C.A., Lane J., Grove M.L., Coresh J., Sotoodehnia N., Ilkhanoff L., Boerwinkle E., Pankratz N., Arking D.E. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur. Heart J.. 2017; 38(46):3443-3448. doi:10.1093/eurheartj/ehx354
46. Wang, L., Xie, L., Zhang, Q., Cai, X., Tang, Y., Wang, L., Gong, J. Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients. CoronaryArtery Disease. 2015; 26(4): 296–300. doi: 10.1097/MCA.0000000000000244
47. Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., Simon H.U. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature medicine.2008;14(9):949–953. doi: 10.1038/nm.1855.
48. Grishko V., Solomon M., Wilson G.L., LeDoux S.P., Gillespie M.N. Oxygen radical-induced mitochondrial DNA damage and repair in pulmonary vascular endothelial cell phenotypes. American journal of physiology Lung cellular and molecular physiology. 2001;280(6):1300–1308. doi: 10.1152/ajplung.2001.280.6.L1300.
Review
For citations:
Ponasenko A.V., Tsepokina A.V., Tkhorenko B.A., Golubenko M.V., Gubieva E.K., Trephilova L.P. Variability of mitochondrial DNA in the development of atherosclerosis and myocardial infarction (a review). Complex Issues of Cardiovascular Diseases. 2018;7(4S):75-85. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-4S-75-85