Cholesterol metabolism in macrophages
https://doi.org/10.17802/2306-1278-2020-9-2-91-101
Abstract
Disturbance of lipid metabolism can lead to the development of pathological processes. Atherosclerosis is a chronic disease characterized by the development of atherosclerotic lesions as a result of the lipid accumulation in the great arterial walls. As a result of cholesterol accumulation by macrophage within the atherosclerotic lesions, they differentiate into foam cells. Macrophage lipid uptake may occur either though the receptor-dependent pathway by low-density lipoprotein receptors and the SR-A, CD36 and LOX-1 scavenger receptors, or the receptor-independent pathway by pinocytosis and phagocytosis. Various enzymes such as ACAT-1 and Abstract NCEH, enzymes of the biosynthesis and fatty acid oxidation pathways, as well as various transcription factors - SREBP, Nrf1 and Nrf2 participate in the intracellular regulation of lipids. High-density lipoproteins and transporters such as ABCA1, ABCG1 and SR-BI play a vital role in the regulation of cholesterol efflux from cells. Players of lipid metabolism are regulated by various kinase signaling pathways that activate many transcription factors - LXR, RXR, PPARy, NF-kB, etc. Regulation disturbance of intracellular metabolism and imbalance in uptake and efflux of cholesterol from macrophages lead to their differentiation into foam cells. The aim of this review is to describe the mechanisms underlaying lipid metabolism in macrophages and resulting in the transformation of these cells into foam cells.
About the Authors
V. A. KhotinaRussian Federation
Khotina Victoria A. - PhD student, research assistant at the Laboratory of Angiopathology.
8, Baltiyskaya St., Moscow, 125315
Competing Interests: not
V. N. Sukhorukov
Russian Federation
Sukhorukov Vasily N. - research assistant at the Laboratory of Infectious Pathology and Molecular Microecology.
3, Tsyurupy St., Moscow, 117418
Competing Interests: not
D. A. Kashirskikh
Russian Federation
Kashirskikh Dmitry A. - research assistant at the Laboratory of Angiopathology.
8, Baltiyskaya St., Moscow, 125315
Competing Interests: not
L. A. Sobenin
Russian Federation
Sobenin Igor A. - PhD, Head of the Laboratory of Medical Genetics.
15A, 3rd Cherepkovskaya St., Moscow, 121552
Competing Interests: not
A. N. Orekhov
Russian Federation
Orekhov Alexander N. - PhD, Professor, Head of the Laboratory of Angiopathology, RIGPP; Senior Researcher, Laboratory of Infectious Pathology and Molecular Microecology, RIHM.
8, Baltiyskaya St., Moscow, 125315; 3, Tsyurupy St., Moscow, 117418
Competing Interests: not
References
1. Sukhorukov V.N., Karagodin V.P., Orekhov A.N. Atherogenic modification of low-density lipoproteins. Biomeditsinskaya Khimiya Russian Academy of Medical Sciences. 2016; 62 (4): 391-402. (In Russian)
2. Poznyak A., Grechko A.V, Poggio P, Myasoedova V.A., Alfieri V, Orekhov A.N. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International Journal of Molecular Sciences MDPI AG. 2020; 21 (5): 1835. doi: 10.3390/ijms21051835
3. Zanoni P, Velagapudi S., Yalcinkaya M., Rohrer L., von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis. 2018; 275: 273-295. doi: 10.1016/j.atherosclerosis.2018.06.881.
4. Kruth H.S., Jones N.L., Huang W., Zhao B., Ishii I., Chang J., Combs C.A., Malide D., Zhang W.-Y Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. American Society for Biochemistry and Molecular Biology. 2005; 280 (3): 2352-2360. doi: 10.1074/jbc.M407167200.
5. Kruth H.S., Huang W, Ishii I., Zhang W.-Y Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. American Society for Biochemistry and Molecular Biology. 2002; 277 (37): 34573-34580. doi: 10.1074/jbc.M205059200.
6. Michael D.R., Ashlin T.G., Davies C.S., Gallagher H., Stoneman T.W., Buckley M.L., Ramji D. P. Differential regulation of macropinocytosis in macrophages by cytokines: Implications for foam cell formation and atherosclerosis. Cytokine Academic Press. 2013; 64 (1): 357-361. doi: 10.1016/j.cyto.2013.05.016.
7. Lucero D., Islam P., Freeman L.A., Jin X., Pryor M., Tang J., Kruth H.S. , Remaley A.T. Interleukin 10 promotes macrophage uptake of HDL and LDL by stimulating fluid-phase endocytosis. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids Elsevier B.V. 2020; 1865 (2): 158537. doi: 10.1016/j.bbalip.2019.158537.
8. Csanyi G., Feck D.M., Ghoshal P., Singla B., Lin H., Nagarajan S., Meijles D. N. et al. CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL. Antioxidants Redox Signal. Mary Ann Liebert Inc. 2017; 26 (16): 886-901. doi: 10.1089/ars.2016.6834.
9. Singh R.K., Haka A.S., Asmal A., Barbosa-Lorenzi V.C., Grosheva I., Chin H.F., Xiong Y, Hla T., Maxfield F.R. TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density Lipoprotein) Aggregates. Arterioscler. Thromb. Vasc. Biol. NLM (Medline). 2020; 40 (1): 86-102. doi: 10.1161/ATVBAHA.119.313200.
10. Kelley J.L., Ozment T.R., Li C., Schweitzer J.B., Williams D.L.Scavenger receptor-A (CD204): A two-edged sword in health and disease. Crit. Rev. Immunol. Begell House Inc. 2014; 34 (3): 241-261. doi: 10.1615/critrevimmunol.2014010267.
11. Nigorikawa K., Matsumura T., Sakamoto H., Morioka S., Kofuji S., Takasuga S., Hazek K. Sac1 phosphoinositide phosphatase regulates foam cell formation by modulating SR-A expression in macrophages. Biol. Pharm. Bull. Pharmaceutical Society of Japan. 2019; 42 (6): 923-928. doi: 10.1248/bpb.b18-00907.
12. Hashizume M., Mihara M. Atherogenic effects of TNF-a and IL-6 via up-regulation of scavenger receptors. Cytokine Academic Press. 2012; 58 (3): 424-430. doi: 10.1016/j.cyto.2012.02.010.
13. Liu Z., Zhu H., Dai X., Wang C., Ding Ye, Song P., Zou M.-H.Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis. Circ. Res. Lippincott Williams and Wilkins. 2017; 121 (9): 1047-1057. doi: 10.1161/CIRCRESAHA.117.311546.
14. Zhao L., Varghese Z., Moorhead J. F., Chen Y, Ruan X.Z. CD36 and lipid metabolism in the evolution of atherosclerosis. Br. Med. Bull. 2018; 126 (1): 101-112. doi: 10.1093/bmb/ldy006
15. Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Experimental and Molecular Medicine Nature Publishing Group. 2014; 46 (6): e99. doi: 10.1038/emm.2014.38.
16. Luo Y, Duan H., Qian Y, Feng L., Wu Z., Wang F. et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. Nature Publishing Group. 2017; 27 (3): 352-372. doi: 10.1038/cr.2017.8.
17. Ding Z., Pothineni N.V.K., Goel A., Luscher T.F., Mehta J.L. PCSK9 and inflammation: Role of shear stress, proinflammatory cytokines and LOX-1 4. Cardiovasc. Res. 2019;
18. Ding Z., Liu S., Wang X., Theus S., Deng X., Fan Y, Zhou S., Mehta J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res. 2018; 114 (8): 1145-1153. doi: 10.1093/cvr/cvy079.
19. Hai Q., Ritchey B., Robinet P, Alzayed A.M., Brubaker G., Zhang J., Smith J.D. Quantitative Trait Locus Mapping of Macrophage Cholesterol Metabolism and CRISPR/Cas9 Editing Implicate an ACAT1 Truncation as a Causal Modifier Variant. Arterioscler. Thromb. Vasc. Biol. Lippincott Williams and Wilkins. 2018; 38 (1): 83-91. doi: 10.1161/ATVBAHA.117.310173.
20. Maiuri M.C., Grassia G., Platt A.M., Carnuccio R., Ialenti A., Maffia P Macrophage Autophagy in Atherosclerosis. Mediators Inflamm. 2013; 2013: 584715. doi: 10.1155/2013/584715
21. Schulze R.J., Sathyanarayan A., Mashek D.G. Breaking fat: The regulation and mechanisms of lipophagy. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids Elsevier B.V. 2017; 1862 (10): 1178-1187.
22. Yvan-Charvet L., Bonacina F., Guinamard R.R., Norata G.D. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc. Res. 2019; 115 (9): 1393-1407. doi: 10.1093/cvr/cvz127.
23. Akopian D., Medh J.D. Genetics and molecular biology: macrophage ACAT depletion - mechanisms of atherogenesis. Curr. Opin. Lipidol. 2006; 17 (1): 85-88. doi: 10.1097/01.mol.0000203192.45649.ba.
24. Yu X.H., Fu Y-C., Zhang D.-W., Yin K., Tang C.-K. Foam cells in atherosclerosis. Clinica Chimica Acta. 2013; 424: 245-252. doi: 10.1016/j.cca.2013.06.006.
25. Melton E.M., Li H., Benson J., Sohn P, Huang L.-H., Song B.-L. et al. Myeloid Acat1/Soat1 KO attenuates proinflammatory responses in macrophages and protects against atherosclerosis in a model of advanced lesions. J Biol Chem . 2019 Oct 25;294(43):15836-15849. doi: 10.1074/jbc.RA119.010564.
26. Shao D.. Di Y, Lian Z., Zhu B., Xu X., Guo D., et al. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9: via targeting ACAT1 in THP-1 cells. Food Funct. Royal Society of Chemistry. 2020; 11 (2): 1258-1269. doi: 10.1039/c9fo02352f.
27. Wang B., P-P. Heb, Zenga G.-F., Zhang T., Yangmi X.-P.O. R-467b regulates the cholesterol ester formation via targeting ACAT1 gene in RAW 264.7 macrophages. Biochimie Elsevier B.V. 2017; 132: 38-44. doi:10.1016/j.biochi.2016.09.012
28. Shao W., Espenshade PJ. Sterol regulatory elementbinding protein (SREBP) cleavage regulates golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J. Biol. Chem. American Society for Biochemistry and Molecular Biology Inc. 2014; 289 (11): 7547-7557.
29. Widenmaier S.B., Snyder N.A., Nguyen T.B., Arduini A. , Lee G.Y, Arruda A.P. et al. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis. Cell. 2017; 171 (5): 1094.e15-1109.e15. doi: 10.1016/j.cell.2017.10.003.
30. Mimura J., Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radical Biology and Medicine Elsevier Inc. 2015; 88 (Part B): 221-232. doi: 10.1016/j.freeradbiomed.2015.06.019.
31. Liu Z., Wang J., Huang E., Gao S., Li H., Lu J., K.Tian, et al. Tanshinone IIA suppresses cholesterol accumulation in human macrophages: Role of heme oxygenase-1. J. Lipid Res. 2014; 55 (2): 201-213. doi: 10.1194/jlr.M040394
32. Namgaladze D., Brune B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochimica et Biophysica Acta -Molecular and Cell Biology of Lipids. 2016; 1861 (11): 17961807. doi: 10.1016/j.bbalip.2016.09.002
33. Sakai K., Nagashima S., Wakabayashi T., Tumenbayar B. , Hayakawa H., Hayakawa M. et al. Myeloid HMG-CoA (3-Hydroxy-3-Methylglutaryl-Coenzyme A) Reductase Determines Atherosclerosis by Modulating Migration of Macrophages. Arterioscler. Thromb. Vasc. Biol. 2018; 38 (11): 2590-2600. doi: 10.1161/ATVBAHA.118.311664.
34. Batista-Gonzalez A., Vidal R., Criollo A., Carreno L.J. New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages Front Immunol. 2020 Jan 10;10:2993. doi: 10.3389/fimmu.2019.02993.
35. Ghosh S. Early steps in reverse cholesterol transport: Cholesteryl ester hydrolase and other hydrolases. Current Opinion in Endocrinology, Diabetes and Obesity. 2012; 19 (2): 136-141. doi: 10.1097/MED.0b013e3283507836.
36. Zhao B., Song J., Chow W.N., St Clair R.W., Rudel L.L., Ghosh S. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr-/- mice. J. Clin. Invest. American Society for Clinical Investigation. 2007; 117 (10): 2983-2992. doi: 10.1172/JCI30485.
37. Sakai K., Igarashi M., Yamamuro D., Ohshiro T., Nagashima S., Takahashi M. et al. Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis inmurine macrophages. J. Lipid Res. American Society for Biochemistry and Molecular Biology Inc .2014; 55 (10): 2033-2040. doi: 10.1194/jlr.M047787.
38. Ouimet M., Barrett T.J., Fisher E.A. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease. Circ. Res. 2019; 124 (10): 15051518. doi: 10.1161/CIRCRESAHA.119.312617.
39. Remmerie A., Scott C.L. Macrophages and lipid metabolism. Cell. Immunol. Academic Press Inc. 2018; 330: 27-42. doi: 10.1016/j.cellimm.2018.01.020
40. Adorni M.P., Cipollari E., Favari E., Zanotti I., Zimetti F., Corsini A., Ricci C., Bernini F., Ferri N. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017; 256: 1-6. doi: 10.1016/j.atherosclerosis.2016.11.019.
41. Watanabe T. et al. Phosphorylation by protein kinase C stabilizes ABCG1 and increases cholesterol efflux. J. Biochem. 2019
42. Zhen Z., Ren S., Ji H., Ding X., Zou P., Lu J. The lncRNA DAPK-IT1 regulates cholesterol metabolism and inflammatory response in macrophages and promotes atherogenesis. Biochem. Biophys. Res. Commun. 2019; 516 (4): 1234-1241. doi: 10.1016/j.bbrc.2019.06.113.
43. Shen W.-J., Azhar S., Kraemer F.B. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu. Rev. Physiol. 2018; 80 (1): 95-116. doi: 10.1146/annurev-physiol-021317-121550
44. Linton M.F., Tao H., Linton E.F., Yancey P.G. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Trends Endocrinol Metab. 2017 Jun; 28(6): 461-472.. doi: 10.1016/j.tem.2017.02.001
45. Galle-Treger L., Moreau M., Ballaire R., Poupel L., Huby T., Sasso E. et al. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovasc. Res. 2020; 116 (3): 554-565. doi: 10.1093/cvr/cvz138.
46. Ma X., Li S.F., Qin Z.S., Ye J., Zhao Z.-L., Fang H.-H. et al. Propofol up-regulates expression of ABCA1, ABCG1, and SR-B1 through the PPARy/bXRa signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc. Pathol. 2015; 24 (4): 230-235. doi: 10.1016/j.carpath.2014.12.004.
47. Tang S.L., Chen W.J., Yin K., Zhao G.-J., Mo Z.-C., Lv Y-C. et al. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRa through the IGF-I-mediated signaling pathway. Atherosclerosis. 2012; 222 (2): 344-354. doi: 10.1016/j.atherosclerosis.2012.03.005.
48. Li Y., Shen S., Ding S., Wang L. Toll-like receptor 2 downregulates the cholesterol effluxby activating the nuclear factor-кБ pathway in macrophagesand may be a potential therapeutic target for the prevention of atherosclerosis. Exp. Ther. Med. 2018; 15 (1): 198-204. doi: 10.3892/etm.2017.5404.
49. Ben-Aicha S., Badimon L., Vilahur G. Advances in HDL: Much more than lipid transporters. Int J Mol Sci. 2020 Jan 22;21(3):732. doi: 10.3390/ijms21030732.
50. Orekhov A.N., Pushkarsky T., Oishi Y., Nikiforov N.G., Zhelankin A.V., Dubrovsky L. et al. HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages. Exp. Mol. Pathol. 2018; 105 (2): 202207. doi: 10.1016/j.yexmp.2018.08.003.
Review
For citations:
Khotina V.A., Sukhorukov V.N., Kashirskikh D.A., Sobenin L.A., Orekhov A.N. Cholesterol metabolism in macrophages. Complex Issues of Cardiovascular Diseases. 2020;9(2):91-101. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-2-91-101