Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Cell and tissue markers of atherosclerosis

https://doi.org/10.17802/2306-1278-2020-9-2-102-113

Abstract

Atherosclerotic lesions are characterized by various multiple changes at the gene expression levels. However, there are general trends at the cellular and molecular levels. Extracellular matrix remodeling of blood vessels occurs due to an increase in the mRNA levels of the cathepsin and matalloprotease genes, as well as a decrease in the levels of type I and III collagen transcripts. A change in the transcriptional activity of some genes leads to a disruption in the regulation of the smooth muscle cells cytoskeleton and intercellular interaction, which also contributes to the formation of atherosclerotic lesions. Attraction of leukocytes to the arterial walls by cathepsins, chemokines and other markers associated with signaling systems leads to the infiltration of monocytes into the intima. In addition, there is a change in the ratio of apoprotein expression, the prevalence of the expression of some over others, which leads to the cholesterol accumulation and impaired lipid metabolism.

The genes responsible for the accumulation of oxidized low-density lipoproteinare activated, that induces inflammatory responses through Toll-like receptors. High levels of CD36 and CD68 are observed, signaling the infiltration of lesions by macrophages. This review focuses on the recent studies on the transcriptome of atherosclerotic plaque from the human carotid artery. We examined differentially expressed genes of metalloproteases, cathepsins, chemokines and their receptors, lipid metabolism, extracellular matrix components, receptors associated with signaling systems, macrophage and smooth muscle cells markers. Several studies have overlapping results, as well as new genes that have not previously been reported to be associated with atherosclerosis. Studying of atherosclerotic plaque markers and single signaling pathway genes can provide new insights into the pathways involved in the mechanism of atherogenesis, as well as identify potential biomarkers that characterize the stages of atherosclerotic lesion development.

About the Authors

D. A. Kashirskikh
Research Institute of General Pathology and Pathophysiology
Russian Federation

Kashirskikh Dmitry A. - researcher assistant at the Laboratory of Angiopathology

8, Baltiyskaya St., Moscow, 125315

Competing Interests: not


V. A. Khotina
Research Institute of General Pathology and Pathophysiology
Russian Federation

Khotina Victoria A. - postgraduate student, researcher assistant at the Laboratory of Angiopathology

8, Baltiyskaya St., Moscow, 125315


Competing Interests: not


V. N. Sukhorukov
Federal State Budgetary Institution “National Medical Research Centerfor Cardiology” of the Ministry of Healthcare of the Russian Federation; Federal State Scientific Institution Research Institute of Human Morphology
Russian Federation

Sukhorukov Vasily N. - researcher assistant at the Laboratory of Infectious Pathology and Molecular Microecology, RIHM; researcher at the Laboratory of Medical Genetics, NMRCC.

15a, 3rd Cherepkovskaya St., Moscow, 121552; 3, Tsyurupy St., Moscow, 117418


Competing Interests: not


I. A. Sobenin
Federal State Budgetary Institution “National Medical Research Centerfor Cardiology” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Sobenin Igor A. - PhD, Head of the Laboratory of Medical Genetics.

15a, 3rd Cherepkovskaya St., Moscow, 121552


Competing Interests: not


A. N. Orekhov
Research Institute of General Pathology and Pathophysiology; Federal State Scientific Institution Research Institute of Human Morphology
Russian Federation

Orekhov Alexander N. - PhD, Professor, Head of the Laboratory of Angiopathology, RIGPP; senior researcher at the Laboratory of Infectious Pathology and Molecular Microecology, RIHM.

8, Baltiyskaya St., Moscow, 125315; 3, Tsyurupy St., Moscow, 117418


Competing Interests: not


References

1. Kochergin N.A., Kochergina A.M., Ganjukov VI., Barbarash O.L. Vulnerable atherosclerotic plaques of coronary arteries in patients with stable coronary artery disease. Complex Issues Cardiovasc. Dis. 2018; 7 (3): 65-71. (In Russian) https://doi.org/10.17802/2306-1278-2018-7-3-65-71

2. Sulkava M., Raitoharju E., Levula M., Seppala I., Lyytikainen L.P., Mennander A., Jarvinen O., Zeitlin R., Salenius J.P., Illig T., Klopp N., Mononen N., Laaksonen R., Kahonen M., Oksala N., Lehtimaki T. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques-Tampere Vascular Study. Sci. Rep. 2017; 7 (1): 1-10. doi: 10.1038/srep41483.

3. Razuvaev A., Ekstrand J., Folkersen L., Agardh H., Markus D., Swedenborg J., Hansson G.K., Gabrielsen A., Paulsson-Berne G., Roy J., Hedin U. Correlations between clinical variables and gene-expression profiles in carotid plaque instability. Eur. J. Vasc. Endovasc. 2011; 42 (6): 722-730. doi: 10.1016/j.ejvs.2011.05.023.

4. Perisic L., Aldi S., Sun Y., Folkersen L., Razuvaev A., Roy J. et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J. Intern. Med. 2016; 279 (3): 293-308. doi: 10.1111/joim.12448.

5. Liu W., Zhao Y, Wu J. Gene expression profile analysis of the progression of carotid atherosclerotic plaques. Mol. Med. Rep. 2018; 17 (4): 5789-5795.

6. Chen P., Chen Y., Wu W., Chen L., Yang X., Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging. 2019; 11 (16): 6469-6489. doi: 10.18632/aging.102200.

7. Traylor M., Makela K.M., Kilarski L.L., Holliday E.G., Devan W.J., Nalls M.A. et al. A Novel MMP12 Locus Is Associated with Large Artery Atherosclerotic Stroke Using a Genome-Wide Age-at-Onset Informed Approach. PLoS Genet. 2014; 10 (7): e1004469. doi: 10.1371/journal.pgen.1004469.

8. Chistiakov D.A., Grechko A.V., Myasoedova V.A., Melnichenko A.A., Orekhov A.N. The role of monocytosis and neutrophilia in atherosclerosis. Journal of Cellular and Molecular Medicine c. 2018; 22 (3): 1366-1382. doi: 10.1111/jcmm.13462.

9. Gaubatz J.W., Ballantyne C.M., Wasserman B.A., He M., Chambless L.E., Boerwinkle E., Hoogeveen R. CAssociation of circulating matrix metalloproteinases with carotid artery characteristics: The atherosclerosis risk in communities carotid mri study. Arterioscler. Thromb. Vasc. Biol. 2010; 30 (5): 10341042. doi: 10.1161/ATVBAHA.109.195370

10. Tsai C.L., , Chen W.C., Hsieh H.L., Chi P.L., Hsiao L.D., Yang C. TNF-a induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-kB activation in osteoblastlike MC3T3-E1 cells. J. Biomed. Sci. 2014; 21:12. doi: 10.1186/1423-0127-21-12.

11. Ma Y, Yabluchanskiy A., Hall M.E., Lindsey M.L.Using plasma matrix metalloproteinase-9 and monocyte chemoattractant protein-1 to predict future cardiovascular events in subjects with carotid atherosclerosis. Atherosclerosis. 2014; 232 (1): 231-233. doi: 10.1016/j.atherosclerosis.2013.09.013

12. Cho A., Reidy M.A. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ. Res. 2002; 91 (9): 845-851.

13. Papaspyridonos M., Smith A., Burnand K.G., Taylor P., Padayachee S., Suckling K.E., James C.H., Greaves D.R., Patel L. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (8): 1837-1844.

14. O’Shea N.R. Critical Role of the Disintegrin Metalloprotease ADAM-like Decysin-1 [ADAMDEC1] for Intestinal Immunity and Inflammation [NCBI] Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5174729/ (accessed: 30.03.2020).

15. Liu J., Sukhova G.K., Sun J.S., Xu W.H., Libby P., Shi G.P. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24 (8): 1359-1366. doi:10.1161/01.ATV.0000134530.27208.41

16. Li W., Yuan X.M. Increased expression and translocation of lysosomal cathepsins contribute to macrophage apoptosis in atherogenesis. Ann N Y Acad Sci. 2004; 1030: 427-433. doi: 10.1196/annals.1329.053

17. O’Connor T., Borsig L., Heikenwalder M. CCL2-CCR2 Signaling in Disease Pathogenesis. Endocr Metab Immune Disord Drug Targets. 2015;15(2):105-18. doi: 10.2174/1871530315666150316120920

18. Lin J., Kakkar V, Lu X. Impact of MCP -1 in Atherosclerosis. Curr. Pharm. Des. 2014; 20 (28): 4580-4588.

19. Koenen R.R., von Hundelshausen P., Nesmelova I. V., Zernecke A., Liehn E.A., Sarabi A. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 2009; 15 (1): 97-103. doi: 10.1038/nm.1898

20. Bala M., Kopp A., Wurm S., Buchler C., Scholmerich J. , Schaffler A. Type 2 diabetes and lipoprotein metabolism affect LPS-induced cytokine and chemokine release in primary human monocytes. Exp. Clin. Endocrinol. Diabetes. 2011; 119 (6): 370-376. doi: 10.1055/s-0030-1268413.

21. Wang J., Wu Q., Yu J., Cao X., Xu Z. miR-125a-5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox-LDL. Exp. Ther. Med. 2019; 18 (3): 1645 -1652. doi: 10.3892/etm.2019.7717.

22. Jones K.L., Maguire J.J., Davenport A.P. Chemokine receptor CCR5: From AIDS to atherosclerosis. Br J Pharmacol. 2011; 162 (7): 1453-1469. doi: 10.1111/j.1476-5381.2010.01147.x

23. Gunther J., Kill A., Becker M.O., Heidecke H., Rademacher J., Siegert E., Radić M., Burmester G.R., Dragun D., Riemekasten G. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res. Ther. 2014; 16 (2): R65. doi: 10.1186/ar4503.

24. Orekhov A., Sobenin I.A., Gavrilin M.A., Gratchev A., Kotyashova S.Y., Nikiforov N.G., Kzhyshkowska J. Macrophages in Immunopathology of Atherosclerosis: A Target for Diagnostics and Therapy. Curr. Pharm. Des. 2014; 21 (9): 1172-1179. doi: 10.2174/1381612820666141013120459

25. Akhavanpoor M., Gleissner C.A., Gorbatsch S., Doesch A.O., Akhavanpoor H., Wangler S. et al. CCL19 and CCL21 modulate the inflammatory milieu in atherosclerotic lesions. Drug Des. Devel. Ther. 2014; 8: 2359-2371. doi: 10.2147/DDDT.S72394

26. Wang H., Liu D., Zhang H. Investigation of the underlying genes and mechanism of macrophage-enriched ruptured atherosclerotic plaques using bioinformatics method. J. Atheroscler. Thromb. 2019; 26 (7): 636-658. doi: 10.5551/jat.45963

27. Fox J.M., Kausar F., Day A., Osborne M., Hussain K., Mueller A., et al. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Sci. Rep. 2018; 8:9466. doi:10.1038/s41598-018-27710-9

28. Doring Y, Noels H., van der Vorst E.P.C., Neideck C., Egea V, Drechsler M., Mandl M. et al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: Evidence from mouse and human studies. Circulation. 2017; 136 (4): 388-403. doi: 10.1161/CIRCULATIONAHA.117.027646

29. Not0 A.-T.W., Mathiesen E.B., Brox J., Bjorkegren J., Hansen J.B. The ApoC-I Content of VLDL Particles is Associated with Plaque Size in Persons with Carotid Atherosclerosis. Lipids. 2008; 43 (7): 673-679. doi: 10.1007/s11745-008-3193-2.

30. Westerterp M., Berbee J.F., Pires N.M., van Mierlo G.J., Kleemann R., Romijn J.A., Havekes L.M., Rensen P.C. Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. Circulation. 2007; 116 (19): 2173-2181. doi: 10.1161/CIRCULATIONAHA.107.693382

31. Perdomo G., Kim D.H., Zhang T., Qu S., Thomas E.A., Toledo F.G., Slusher S., Fan Y, Kelley D.E., Dong H.H. A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res. 2010; 51 (6): 1298-1311. doi: 10.1194/jlr.M001206.

32. Ali K., Abo-Ali E.M., Kabir M.D., Riggins B., Nguy S., Li L., Srivastava U., Thinn S.M. A Western-fed diet increases plasma HDL and LDL-cholesterol levels in ApoD-/- mice. PLoS One. 2014; 9 (12). doi: 10.1371/journal.pone.0115744.

33. Wang J., Wei B., Cao S., Xu F., Chen W., Lin H., Du C., Sun Z. Identification by microarray technology of key genes involved in the progression of carotidatherosclerotic plaque. Genes Genet. Syst. 2014; 89 (6): 253-258. doi: 10.1266/ggs.89.253.

34. Xu L., Zhou L., Li P. CIDE proteins and lipid metabolism. Arterioscler. Thromb. Vasc. Biol. 2012; 32 (5): 1094-1098. doi: 10.1161/ATVBAHA.111.241489.

35. Takahashi Y, Shinoda A., Furuya N., Harada E., Arimura N., Ichi I., Fujiwara Y, Inoue J., Sato R. Perilipin-Mediated Lipid Droplet Formation in Adipocytes Promotes Sterol Regulatory Element-Binding Protein-1 Processing and Triacylglyceride Accumulation. PLoS One. 2013; 8 (5): e64605. doi: 10.1371/journal.pone.0064605..

36. Mehta J.L., Sanada N., Hu C.P., Chen J., Dandapat A., Sugawara F. et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ. Res. 2007; 100 (11): 1634-1642. doi: 10.1161/CIRCRESAHA.107.149724

37. Prockop D.J., Kivirikko K.I. Collagens: Molecular Biology, Diseases, and Potentials for Therapy. Annu. Rev. Biochem. s 1995; 64 (1): 403-434. doi: 10.1146/annurev.bi.64.070195.002155

38. Leistritz D.F., Pepin M.G., Schwarze U., Byers P.H. COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet. Med. 2011; 13 (8): 717-722. doi: 10.1097/GIM.0b013e3182180c89.

39. Choudhary S., Higgins C.L., Chen I.Y., Reardon M., Lawrie G., Vick G.W. 3rd, Karmonik C., Via D.P., Morrisett J.D. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (10): 2351-2358. doi: 10.1161/01.ATV.0000239461.87113.0b

40. Strassheim D., Karoor V, Stenmark K., Verin A., Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. Vessel Plus OAE Publishing 2018; 2 (9): 29. doi: 10.20517/2574-1209.2018.44

41. Patel J., McNeill E., Douglas G., Hale A.B., de Bono J., Lee R. et al. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nat. Commun. Nature Publishing Group 2015; 6. doi: 10.1038/ncomms7614.

42. Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell Cell Press 2002; 110 (6): 673-687. doi: 10.1016/s0092-8674(02)00971-6

43. Edfeldt K., Swedenborg J., Hansson G.K., Yan Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 2002; 105 (10): 1158-1161.

44. Mullick A.E., Soldau K., Kiosses W.B., Bell T.A., Tobias P.S., Curtiss L.K. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 2008; 205 (2): 373-383. doi: 10.1084/jem.20071096.

45. Shishido T., Nozaki N., Takahashi H., Arimoto T., Niizeki T., Koyama Y, Abe J., Takeishi Y, Kubota I. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. Biochem. Biophys. Res. Commun. 2006; 345 (4): 1446-1453. doi: 10.1016/j.bbrc.2006.05.056

46. Jiang Y., Wang M., Huang K., Zhang Z., Shao N., Zhang Y, Wang W., Wang S. Oxidized low-density lipoprotein induces secretion of interleukin-1p by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem. Biophys. Res. Commun. 2012; 425 (2): 121-126. doi: 10.1016/j.bbrc.2012.07.011.

47. Guo L., Akahori H., Harari E., Smith S.L., Polavarapu R., Karmali V. et al. CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J. Clin. Invest. 2018; 128 (3): 1106-1124. doi: 10.1172/JCI93025.

48. Lund S.A., Giachelli C.M., Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009; 3 (3-4): 311-322. doi: 10.1007/s12079-009-0068-0.

49. Chiba S., Okamoto H., Kon S., Kimura C., Murakami M., Inobe M., Matsui Y., Sugawara T., Shimizu T., Uede T., Kitabatake A. Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels. 2002; 16 (3): 111-117. doi: 10.1007/s003800200005

50. de la Cuesta F., Zubiri I., Maroto A.S., Posada M., Padial L.R., Vivanco F., Alvarez-Llamas G., Barderas M.G. Deregulation of smooth muscle cell cytoskeleton within the human atherosclerotic coronary media layer. J. Proteomics. 2013; 82: 155-165. doi: 10.1016/j.jprot.2013.01.032.


Review

For citations:


Kashirskikh D.A., Khotina V.A., Sukhorukov V.N., Sobenin I.A., Orekhov A.N. Cell and tissue markers of atherosclerosis. Complex Issues of Cardiovascular Diseases. 2020;9(2):102-113. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-2-102-113

Views: 956


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)