Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

Влияние воспаления и мутаций митохондриального генома на клеточные механизмы атерогенеза

https://doi.org/10.17802/2306-1278-2020-9-4-80-87

Полный текст:

Аннотация

В настоящее время одним из наиболее распространенных возрастных заболеваний является атеросклероз коронарных артерий, впоследствии вызывающий заболевания сердечно-сосудистой системы. Инфаркт и инсульт - осложнения атеросклеротического процесса вследствие критического сужения артерий соответствующей локализации. Атеросклероз представляет собой воспалительное заболевание и поражает различные артерии в организме человека. Патологический процесс сопровождается очаговым утолщением интимы пораженных артерий, в которых по мере прогрессирования заболевания образуются атеросклеротические бляшки. Одним из перспективных направлений изучения патогенеза атеросклероза является исследование мозаичности атеросклеротических поражений, их локального или очагового характера. В настоящее время существует множество гипотез, объясняющих этот феномен, но, на наш взгляд, наиболее убедительным представляется генетическое обоснование мозаичности атеросклеротических поражений. Вариации в генах ядра и митохондрий клеток артериальной стенки, безусловно, влияют на развитие атеросклероза. Выявление таких изменений можно рассматривать для оценки предрасположенности к заболеванию, его прогрессирования и прогноза.

Об авторах

А. М. Маркин
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Маркин Александр Михайлович - кандидат медицинских наук, научный сотрудник лаборатории инфекционной патологии и молекулярной микроэкологии.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


Ю. В. Маркина
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Маркина Юлия Владимировна - кандидат медицинских наук, научный сотрудник лаборатории инфекционной патологии и молекулярной микроэкологии.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


Т. В. Толстик
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Толстик Таисия Владимировна – аспирант.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


А. И. Богатырева
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Богатырева Анастасия Ильинична - аспирант.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


И. А. Собенин
Федеральное государственное бюджетное учреждение Национальный медицинский исследовательский центр кардиологии Министерства здравоохранения Российской Федерации
Россия

Собенин Игорь Александрович - доктор медицинских наук, руководитель лаборатории медицинской генетики.

Ул. 3-я Черепковская 15А, Москва, 121552


Конфликт интересов: заявляет об отсутствии конфликта интересов


А. Н. Орехов
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека; Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт общей патологии и патофизиологии
Россия
Орехов Александр Николаевич - доктор биологических наук, ведущий научный сотрудник лаборатории инфекционной патологии и молекулярной микроэкологии НИИ морфологии человека; заведующий лабораторией ангиопатологии НИИ общей патологии 
Конфликт интересов: заявляет об отсутствии конфликта интересов


Список литературы

1. Mundi S., Massaro M., Scoditti E., Carluccio M.A., van Hinsbergh V.W.M., Iruela-Arispe M.L., De Caterina R. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res. 2018; 114(1): 35-52. doi: 10.1093/cvr/cvx226.

2. Summerhill V.I., Grechko A.V., Yet S.F., Sobenin I.A., Orekhov A.N. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int J Mol Sci. 2019; 20(14): 3561. doi:10.3390/ijms20143561.

3. Rea I. M., Gibson D. S., McGilligan V., McNerlan S. E., Alexander H. D., Ross O. A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Frontiers in immunology. 2018; 9: 586. doi:10.3389/fimmu.2018.00586.

4. Jha C.K., Mir R., Banu S., Elfaki I., Chahal S.M.S. Heterozosity in LDLR rs2228671 and LDLR rs72658855 are associated with increased risk of developing Coronary artery disease in India -A case control study. Endocr Metab Immune Disord Drug Targets. 2020; 20(3): 388-399. doi: 10.2174/1871530319666191015164505.

5. Wang W., Zhang K., Zhang H., Li M., Zhao Y., Wang B., et al. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining. Med Sci Monit. 2019; 25: 9949-9962. doi: 10.12659/MSM.917068.

6. Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor-mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. Vessel Plus 2018; 2: 21. doi: 10.20517/2574-1209.2018.44.

7. Bjornsson E., Thorleifsson G., Helgadottir A., Gudnason T., Gudbjartsson T., Andersen K., et al.. Association of Genetically Predicted Lipid Levels With the Extent of Coronary Atherosclerosis in Icelandic Adults. JAMA cardiology. 2019; 5(1): 13-20. doi: 10.1001/jamacardio.2019.2946.

8. Rincon L.M., Sanmartm M., Alonso G.L., Rodriguez J.A., Muriel A., Casas E., et al. A genetic risk score predicts recurrent events after myocardial infarction in young adults. Rev Esp Cardiol (Engl Ed). 2019; S1885-5857(19)30263-4. doi: 10.1016/j.rec.2019.08.006;

9. Padarti A, Zhang J. Recent advances in cerebral cavernous malformation research. Vessel Plus 2018; 2: 29. doi:10.20517/2574-1209.2018.34

10. Sinyov V.V., Sazonova M.A., Ryzhkova A.I., Galitsyna E.V., Melnichenko A.A., Postnov A.Y., Orekhov A.N., Grechko A.V., Sobenin I.A. Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations. Vessel Plus. 2017; 1: 145-50. doi: 10.20517/2574-1209.2016.04

11. Kruger-Genge A., Blocki A., Franke R.P., Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019; 20(18): 4411. doi:10.3390/ijms20184411.

12. Rekhter M.D., Andreeva E.R., Mironov A.A., Orekhov A.N. Three-dimensional cytoarchitecture of normal and atherosclerotic intima of human aorta. Am J Pathol. 1991; 138(3): 569-580.

13. Orekhov A.N., Bobryshev Y.V., Chistiakov D.A. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014; 103(4): 43851. doi: 10.1093/cvr/cvu168.

14. Hill J., Rom S., Ramirez S.H., Persidsky Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J Neuroimmune Pharmacol. 2014; 9(5): 591-605. doi:10.1007/s11481-014-9557-x.

15. Ivanova E.A., Orekhov A.N. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes. Stem Cells Int. 2016; 7321404. doi: 10.1155/2016/7321404.

16. Orekhov A.N., Andreeva E.R., Andrianova I.V., Bobryshev Y.V. Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis. 2010; 212(2): 436-443. doi: 10.1016/j.atherosclerosis.2010.07.009.

17. Ivanova E. A., Myasoedova V. A., Melnichenko A. A., Grechko A. V., Orekhov A. N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative medicine and cellular longevity. 2017; 2017: 1273042. doi: 10.1155/2017/1273042.

18. Orekhov A.N., Myasoedova V.A. Low density lipoprotein-induced lipid accumulation is a key phenomenon of atherogenesis at the arterial cell level. Vessel Plus. 2019; 3: 3. doi: 10.20517/2574-1209.2018.80.

19. Ivanova E. A., Bobryshev Y. V., Orekhov A. N. Intimal pericytes as the second line of immune defence in atherosclerosis. World journal of cardiology. 2015; 7(10): 583593. doi: 10.4330/wjc.v7.i10.583.

20. Orekhov A.N., Andreeva E.R., Bobryshev Y.V. Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue Cell. 2016; 48(1): 25-34. doi: 10.1016/j.tice.2015.11.002.

21. Nakashima Y., Wight T.N., Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008; 79(1): 14-23. doi: 10.1093/cvr/cvn099.

22. Subbotin V.M. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today. 2016; 21(10): 1578-1595. doi: 10.1016/j.drudis.2016.05.017.

23. den Hoed M., Strawbridge R. J., Almgren P., Gustafsson S., Axelsson, T., Engstrom G., et al. GWAS-identified loci for coronary heart disease are associated with intima-media thickness and plaque presence at the carotid artery bulb. Atherosclerosis. 2015; 239(2): 304-310. doi: 10.1016/j.atherosclerosis.2015.01.032.

24. Belsky D. W., Moffitt T. E., Sugden K., Williams B., Houts R., McCarthy J., et al. Development and evaluation of a genetic risk score for obesity. Biodemography and social biology. 2013; 59(1): 85-100. doi: 10.1080/19485565.2013.774628.

25. Talukdar H. A., Foroughi Asl H., Jain R. K., Ermel R., Ruusalepp A., Franzen O., Kidd B.A., Readhead B., Giannarelli C., Kovacic J.C., Ivert T., Dudley J.T., Civelek M., Lusis A.J., Schadt E.E., Skogsberg J., Michoel T., Bjorkegren J.L.M. Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell systems. 2016; 2(3): 196-208. doi:10.1016/j.cels.2016.02.002.

26. Howson J., Zhao W., Barnes D. R., Ho W. K., Young R., Paul D. S., Waite L.L., Freitag D.F., Fauman E.B., Salfati E.L., Sun B.B., Eicher J.D., Johnson A.D., Sheu W.H.H., Nielsen S.F., Lin W.-Y., Surendran P., Malarstig A., Wilk J.B., Tybj^rg-Hansen A., Rasmussen K.L., Kamstrup P.R., Deloukas P., Erdmann J., Kathiresan S., Samani N.J., Schunkert H., Watkins H., Do R., Rader D.J., Johnson J.A., Hazen S.L., Quyyumi A.A., Spertus J.A., Pepine C.J., Franceschini N., Justice A., Reiner A.P., Buyske S., Hindorff L.A., Carty C.L., North K.E., Kooperberg C., Boerwinkle E., Young K., Graff M., Peters U., Absher D., Hsiung C.A., Lee W.-J., Taylor K.D., Chen Y.-H., Lee I.-T., Guo X., Chung R.-H., Hung Y.-J., Rotter J.I., Juang J.-M.J., Quertermous T., Wang T.-D., Rasheed A., Frossard P., Alam D.S., Majumder A.A.S., Di Angelantonio E., Chowdhury R., Chen Y.-D.I., Nordestgaard B.G., Assimes T.L., Danesh J., Butterworth A.S., Saleheen D. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature genetics. 2017; 49(7): 1113-1119. doi:10.1038/ng.3874.

27. Rincon L.M., Sanmartm M., Alonso G.L., Rodriguez J.A., Muriel A., Casas E., et al. Navarro M., Carbonell A., Lazaro C., Fernandez S., Gonzalez P., Rodriguez M., Jimenez-Mena M., Fernandez-Golfln C., Esteban A., Garci'a-Bermejo M. L., Zamorano J.L. A genetic risk score predicts recurrent events after myocardial infarction in young adults. Rev Esp Cardiol (Engl Ed). 2019; 1885-5857(19): 30263-30264. doi: 10.1016/j.rec.2019.08.006.

28. Myasoedova VA, Chistiakov DA, Grechko AV, Orekhov AN. Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol. 2018; 123: 159-167. doi: 10.1016/j.yjmcc.2018.08.026.

29. Lusis A.J. Y-Chromosome Genetic Variation Associated With Atherosclerosis and Inflammation. Arterioscler Thromb Vasc Biol. 2019; 39(11): 2201-2202. doi: 10.1161/ ATVBAHA.119.313369.

30. Marsman J., Gimenez G., Day R.C., Horsfield J.A., Jones G.T. A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Hum Mol Genet. 2020; 29(4): 554-565. doi: 10.1093/hmg/ddz256.

31. Wang Y., Jia L., Xie Y., Cai Z., Liu Z., Shen J., Lu Y., Wang Y., Su S., Ma Y., Xiang M. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis. 2019; 289: 64-72. doi: 10.1016/j.atherosclerosis.2019.08.016.

32. Brozovich F.V., Nicholson C.J., Degen C.V., Gao Y.Z., Aggarwal M., Morgan K.G. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev. 2016; 68(2): 476-532. doi:10.1124/pr.115.010652.

33. Wu G., Cai J., Han Y., Chen J., Huang Z. P., Chen C., Cai Y., Huang H., Yang Y., Liu Y., Xu Z., He D., Zhang X., Hu X., Pinello L., Zhong D., He F., Yuan G.-C., Wang D.-Z., Zeng C. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014; 130(17): 14521465. doi: 10.1161/CIRCULATIONAHA.114.011675.

34. Kong Y., Hsieh C.H., Alonso L.C. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Front Endocrinol (Lausanne). 2018; 9: 405. doi:10.3389/fendo.2018.00405.

35. Calvo M.J., Martmez M.S., Torres W, Chavez-Castillo M., Luzardo E., Villasmil N., Salazar J., Velasco M., Bermudez V. Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function. Vessel Plus 2017; 1: 116-128. doi:10.20517/2574-1209.2017.14.

36. Sobenin I.A., Myasoedova V.A., Orekhov A.N. Phytoestrogen-Rich Dietary Supplements in Anti-Atherosclerotic Therapy in Postmenopausal Women. Curr Pharm Des. 2016;22(2):152-63.

37. Gu H.M., Adijiang A., Mah M., Zhang D.W. Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding. J Lipid Res. 2013; 54(12): 33453357. doi:10.1194/jlr.M041129.

38. Cariou B., Dijk W. EGF-A peptides: A promising strategy for PCSK9 inhibition. Atherosclerosis. 2020; 292: 204206. doi: 10.1016/j.atherosclerosis.2019.11.010.

39. Fouchier S.W., Dallinga-Thie G.M., Meijers J.C., Zelcer N., Kastelein J.J., Defesche J.C., Hovingh G.K. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res. 2014; 115(6): 552-5. doi: 10.1161/CIRCRESAHA.115.304660.

40. Weakley S. M., Jiang J., Kougias P., Lin P. H., Yao Q., Brunicardi F. C., Gibbs R. A., Chen C. Role of somatic mutations in vascular disease formation. Expert review of molecular diagnostics, 2010; 10(2): 173-185. doi:10.1586/erm.10.1.

41. Tang X., Luo Y.X., Chen H.Z., Liu D.P. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol. 2014; 5: 175. doi:10.3389/fphys.2014.00175.

42. Hu, F., Liu, F. Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases?. Cell Signal. 2011; 23(10): 1528-1533. doi:10.1016/j.cellsig.2011.05.008.

43. Martmez M.S., Garcia A., Luzardo E., Chavez-Castillo M., Olivar L.C., Salazar J., Velasco M.l., Rojas Quintero J.J., Bermudez V. Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis. Vessel Plus. 2017; 1: 130-41. doi:10.20517/2574-1209.2017.34.

44. Sobenin I.A., Sazonova M.A., PostnovA.Y., Salonen J.T., Bobryshev Y.V., Orekhov A.N. Association of mitochondrial genetic variation with carotid atherosclerosis. PLoS One. 2013; 8(7): e68070. doi: 10.1371/journal.pone.0068070.

45. Sazonova M., Sinyov V., Barinova V., Ryzhkova A., Zhelankin A., Postnov A., Sobenin I.A., Bobryshev Y.V., Orekhov A.N. Mosaicism of Mitochondrial Genetic Variation in Atherosclerotic Lesions of the Human Aorta. BioMed research international. 2015; 825468. doi: 10.1155/2015/825468.

46. Siasos G., Tsigkou V., Kosmopoulos M., Theodosiadis D., Simantiris S., Tagkou N.M., Tsimpiktsioglou A., Stampouloglou P.K., Oikonomou E., Mourouzis K., Philippou A., Vavuranakis M., Stefanadis C., Tousoulis D., Papavassiliou A.G. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Annals of translational medicine. 2018; 6(12): 256. doi:10.21037/atm.2018.06.21.

47. Liang H., Ward W.F. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006; 30(4): 145-151. doi: 10.1152/advan.00052.2006.

48. Jia Z., Zhang Y., Li Q., Ye Z., Liu Y., Fu C., Cang X., Wang M., Guan M.-X. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis. Nucleic acids research. 2019; 47(4): 20562074. doi:10.1093/nar/gky1241.

49. Diot A., Morten K., Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mammalian genome : official journal of the International Mammalian Genome Society. 2016; 27(7-8): 381-395. doi:10.1007/s00335-016-9651-x.

50. Vasquez-Trincado C., Garda-Carvajal I., Pennanen C., Parra V., Hill J. A., Rothermel B.A., Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. The Journal of physiology. 2016; 594(3): 509-525. doi:10.1113/JP271301.

51. Chistiakov D.A., Sobenin I.A., Revin V.V., Orekhov, A.N., Bobryshev Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014; 238463. doi:10.1155/2014/238463.

52. Yu E.P. Bennett M.R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol. Metab. 2014; 25: 481-487. doi: 10.1016/j.tem.2014.06.008.

53. Itsara L.S., Kennedy S.R., Fox E.J., Yu S., Hewitt J.J., Sanchez-Contreras M., Cardozo-Pelaez F., Pallanck L.J. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 2014; 10: e1003974. doi: 10.1371/journal.pgen.1003974.

54. Kennedy S.R.; Salk J.J.; Schmitt M.W.; Loeb L.A. Ultrasensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 2013; 9: e1003794.

55. Orekhov A.N., Zhelankin A.V., Kolmychkova K.I., Mitrofanov K.Y., Kubekina M.V., Ivanova E.A., Sobenin I.A. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations. Exp Mol Pathol. 2015; 99(3): 672-6.

56. Orekhov A.N., Poznyak A.V., Sobenin I.A., Nikifirov N.N., Ivanova E.A. Mitochondrion as a selective target for treatment of atherosclerosis: Role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation. Curr Neuropharmacol. 2019. doi: 10.2174/1570159X17666191118125018.

57. Tertov V.V., Sobenin I.A., Gabbasov Z.A., Popov E.G., Jaakkola O., Solakivi T., Nikkari T., Smirnov V.N., OrekhovA.N. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization. Lab Invest. 1992; 67(5): 665-75.

58. Tertov V.V., Sobenin I.A., Gabbasov Z.A., Popov E.G., Orekhov A.N. Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins. Biochem Biophys Res Commun. 1989; 163(1): 489-94. doi: 10.1016/0006-291x(89)92163-3.

59. Orekhov A.N., Nikiforov N.G., Sukhorukov V.N., Kubekina M.V., Sobenin I.A., Wu W.K., Foxx K.K., Pintus S., Stegmaier P., Stelmashenko D., Kel A., Gratchev A.N., Melnichenko A.A., Wetzker R., Summerhill V.I., Manabe I., Oishi Y. Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis. Int J Mol Sci. 2020; 21(3): 817. doi: 10.3390/ijms21030817.


Для цитирования:


Маркин А.М., Маркина Ю.В., Толстик Т.В., Богатырева А.И., Собенин И.А., Орехов А.Н. Влияние воспаления и мутаций митохондриального генома на клеточные механизмы атерогенеза. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(4):80-87. https://doi.org/10.17802/2306-1278-2020-9-4-80-87

For citation:


Markin A.M., Markina Yu.V., Tolstik T.V., Bogatyreva A.I., Sobenin I.A., Orekhov А.N. Influence of inflammation and mitochondrial mutations on cellular mechanisms of atherogenesis. Complex Issues of Cardiovascular Diseases. 2020;9(4):80-87. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-4-80-87

Просмотров: 261


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)