Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

Роль стресса эндоплазматического ретикулума в атеросклерозе

https://doi.org/10.17802/2306-1278-2020-9-4-88-94

Полный текст:

Аннотация

В обзоре проанализированы причины стресса эндоплазматического ретикулума и связанные с ним внутриклеточные события. Обсуждается связь стресса эндоплазматического ретикулума с воспалением и накоплением липидов в клетках при атеросклерозе.

Об авторах

М. Багери Екта
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Багери Екта Марьям - младший научный сотрудник лаборатории клеточной и молекулярной патологии сердечно-сосудистой системы.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


В. Н. Сухоруков
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Сухоруков Василий Николаевич - научный сотрудник лаборатории клеточной и молекулярной патологии сердечно-сосудистой системы.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


А. М. Маркин
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека
Россия

Маркин Александр Михайлович, научный сотрудник лаборатории клеточной и молекулярной патологии сердечно-сосудистой системы.

Ул. Цюрупы 3, Москва, 117418


Конфликт интересов: заявляет об отсутствии конфликта интересов


И. А. Собенин
Федеральное государственное бюджетное учреждение Национальный медицинский исследовательский центр кардиологи Министерства здравоохранения Российской Федерации
Россия

Собенин Игорь Александрович - доктор медицинских наук, руководитель лаборатории медицинской генетики.

Ул. 3-я Черепковская 15А, Москва, 121552


Конфликт интересов: заявляет об отсутствии конфликта интересов


А. Н. Орехов
Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт морфологии человека; Федеральное государственное бюджетное научное учреждение Научно-исследовательский институт общей патологии и патофизиологии
Россия

Орехов Александр Николаевич - доктор биологических наук, ведущий научный сотрудник лаборатории клеточной и молекулярной патологии сердечно-сосудистой системы НИИ морфологии человека; заведующий лабораторией ангиопатологии НИИ общей патологии и патофизиологии.


Конфликт интересов: заявляет об отсутствии конфликта интересов


Список литературы

1. Williams K.J., Tabas I. Atherosclerosis and inflammation. Science. 2002; 297: 521-522. doi: 10.1126/science.297.5581.521

2. Gargalovic P.S., Gharavi N.M., Clark M.J., Pagnon J, Yang W.P., He A., et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2490-2496. doi: 10.1161/01.ATV.0000242903.41158.a1

3. Sobenin IA., Myasoedova V.A., Orekhov A.N. Phytoestrogen-Rich Dietary Supplements in Anti-Atherosclerotic Therapy in Postmenopausal Women. Curr Pharm Des. 2016;22(2):152-63. doi:10.2174/1381612822666151112150520

4. Moore K. J., Sheedy F. J., Fisher E. A. Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology. 2013; 13 (10): 709-721.

5. Bouhlel M. A., Derudas B., Rigamonti E., Dievar R., Brozek J., Haulon S., et al. PPARy activation primes human monocytes into alternative M2 macrophages with antiinflammatory properties. Cell metabolism. 2007; 6 (2): 137143. doi: 10.1016/j.cmet.2007.06.010.

6. VarinA., Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology. 2009;214:630-41. doi:101016/j.imbio.200811.009.

7. Brocheriou I., Maouche S., Durand H., Braunersreuther V., Le Naour G., Gratchev A., Koskas F., Mach F., Kzhyshkowska J., Ninio E. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis. 2011;214:316-24. doi:10.1016/j.atherosclerosis.2010.11.023.

8. Stoger J.L., Gijbels M.J., van der Velden S., Manca M., van der Loos C.M., Biessen E.A., Daemen M.J., Lutgens E., de Winther M.P. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461-8. doi: 101016/j.atherosclerosis.2012.09.013.

9. Minamino T., Kitakaze M. ER stress in cardiovascular disease. Journal of Molecular and Cellular Cardiology. 2010; 48 (6): 1105-1110. doi:10.1016/j.yjmcc.2009.10.026

10. Gaut J.R., Hendershot L.M. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol. 1993; 5: 589-595

11. Lee A.S. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001; 26: 504510. doi:10.1016/s0968-0004(01)01908-9

12. Szegezdi E., Logue S.E., Gorman A.M., Samali A. Mediatirs of endoplasmic reticulum stresss-induced apoptosis. EMBO Rep. 2006; 7 (9): 880-885. doi:10.1038/sj.embor.7400779

13. Zhang K., Kaufman D.J. Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo. Methods Enzymol. 2008; 442: 395-419.

14. Han J., Kaufman R.J. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016; 57(8): 1329-38. doi: 10.1194/jlr.R067595

15. Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007; 8: 519-529. doi:10.1038/nrm2199

16. Todd D.J., Lee A.H, Glimcher L.H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev. Immunol. 2008; 8:663-674. doi:10.1038/nri2359

17. Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001; 107: 881-891. doi:10.1016/s0092-8674(01)00611-0

18. Lee A.H., Iwakoshi N.N., Glimcher L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003; 23: 7448-7459. doi:10.1128/mcb.23.21.7448-7459

19. Yamamoto K., Sato T., Matsui T., Sato M., Okada T., Yoshida H., et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6a and XBP1. Dev Cell. 2007; 13: 365-376. doi:10.1016/j.devcel.2007.07.018

20. Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999; 397: 271-274. doi: 10.1038/16729

21. Schroder M., Kaufman R.J. The mammalian unfolded protein response. Ann Rev Biochem. 2005; 74: 739-789. doi:10.1146/annurev.biochem.73.011303.074134

22. Adachi Y., Yamamoto K., Okada T., Yoshida H., Harada A., Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 2008; 33: 75-89. doi:10.1247/csf.07044

23. Xiaoyun S., Schmitz G., Zhang M., Mackie R.I, Cann I.K. Chapter One Heterologous Gene Expression in Filamentous Fungi. Adv Appl Microbiol. 2012; 81:1-61. doi: 10.1016/B978-0-12-394382-8.00001-0.

24. Toth A., Nickson P., Mandl A. Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets.2007; 7 (3): 205-218

25. Groenendyk J., Sreenivasaiah P.K., Kim do H. Biology of endoplasmic reticulum stress in the heart. Cir Res. 2010; 107 (10): 1185-1197. doi: 10.1161/CIRCRESAHA.110.227033

26. Gregor M.F., Hotamisligil G.S. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res. 2007 ;48(9): 1905-14. doi:10.1194/jlr.R700007-JLR200

27. Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., Ozdelen E., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306:457461. doi:10.1126/science.1103160

28. Lee A.H., Scapa E.F., Cohen D.E., Glimcher L.H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008; 320:1492-1496. doi: 10.1126/science.1158042

29. Oyadomari S., Harding HP., Zhang Y., Oyadomari M., Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008; 7:520-532. doi:10.1016/j.cmet.2008.04.011

30. Ota T., Gayet C., Ginsberg H.N., Clin J. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. Invest. 2008; 118:316332. doi: 10.1172/JCI32752

31. Ozawa K., Miyazaki M., Matsuhisa M., Takano K., Nakatani Y, Hatazaki M., et al. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes. 2005; 54:657-663. doi:10.2337/diabetes.54.3.657

32. Ozcan U., Yilmaz E., Ozcan L., Furuhashi M., Vaillancourt E., Smith R.O., et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313:1137-1140. doi: 10.1126/science.1128294

33. Ramanadham S., Hsu F.F, Zhang S., Jin C., Bohrer A., Song H., et al. Apoptosis of insulin-secreting cells induced by endoplasmic reticulum stress is amplified by overexpression of group VIA calcium-independent phospholipase A2 (iPLA2 beta) and suppressed by inhibition of iPLA2 beta. Biochemistry. 2004; 43:918-930. doi:10.1021/bi035536m

34. Tessitore A., del P Martin M., Sano R., Ma Y., Mann L., Ingrassia A., et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell. 2004; 15:753-766. doi: 10.1016/j.molcel.2004.08.029

35. Hotamisligil G. Endoplasmic reticulum stress and atherosclerosis. Nat Med. 2010; 16: 396-399. doi:10.1038/nm0410-396

36. Almeida SF., Fleming JV., Azevedo JE., Carmo-Fonseca M., de Sousa M. Stimulation of an unfolded protein response impairs MHC class I expression. J Immunol. 2007; 178: 36123619. doi: 10.4049/jimmunol.178.6.3612

37. Granados DP., Tanguay P.L, Hardy M.P, Caron E., de Verteuil D., Meloche S., et al. ER stress affects processing of MHC class I-associated peptides.BMC Immunol. 2009; 10: 10. doi:10.1186/1471-2172-10-10

38. Yang L., Jhaveri R., Huang J., Qi Y., Diehl A.M. Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab. Invest. 2007; 87: 927937. doi: 10.1038/labinvest.3700603

39. Kelley J.L., Ozment T.R., Li C., Schweitzer J.B., Williams D.L. Scavenger receptor-A (CD204): A two-edged sword inhealth and disease. Critical Reviews in Immunology. 2014; 34 (3): 241—261. doi:10.1615/critrevimmunol.2014010267

40. Ji Y., Jian B., Wang N., Sun Y., Moya M.L., Phillips M.C., et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem. 1997; 272 (34): 20982-5. doi: 10.1074/jbc.272.34.20982

41. Cojocaru E., Trandafirescu M., Leon M., Cotu^iu C., Foia L. Immunohistochemical expression of anti-CD68 antibody in atherosclerotic plaque. Rom J Morphol. Embryol. 2012; 53 (1): 61—66.

42. Goyal T., Mitra S., Khaidakov M., Wang X., Singla S., Ding Z., et al. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Cur Atheroscler Rep. 2012; 14: 150-159. doi:10.1007/s11883-012-0228-1

43. Tabas I. Macrophage Apoptosis in Atherosclerosis: Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress. Antioxid Redox Signal. 2009; 11 (9): 2333-2339. doi: 10.1089/ars.2009.2469

44. Martmez M.S, Garda A., Luzardo E., Chavez-Castillo M., Olivar L.C., Salazar J., et al. Energetic metabolism in cardiomyocytes: molecular basis of heart ischemia and arrhythmogenesis. Vessel Plus. 2017; 1:130-4. doi: 10.20517/2574-1209.2017.34

45. Gargalovic P.S., Gharavi N.M., Clark M.J., Pagnon J., Yang W.P., He A., et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 2006; 26: 2490-2496. doi: 10.1161/01.ATV.0000242903.41158.a1

46. Li Y., Schwabe R.F., DeVries-Seimon T., Yao P.M., Gerbod-Giannone M.C., Tall A.R., Davis R.J., Flavell R., Brenner D.A., Tabas I. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-а and interleukin-6: model of NF-kB- and MAP kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 2005; 280: 21763-21772. doi: 10.1074/jbc.M501759200

47. Schroder M., Kaufman R.J. Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med. 2006; 6 (1): 5-36. doi:10.2174/156652406775574569

48. Zhang K., Kaufman R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008; 454 (7203): 455-462. doi: 10.1038/nature07203

49. Calvo M.J, Martmez M.S., Torres W., Chavez-Castillo M., Luzardo E., Villasmil N., et al. Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function. Vessel Plus. 2017; 1:116-128. doi:116-128.10.20517/2574-1209.2017.14

50. Rius J., Guma M., Schachtrup C., Akassoglou K., Zinkernagel A.S., Nizet V., et al. NF-kB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1a Nature. 2008; 453: 807-811. doi: 10.1038/nature06905

51. Deng J., Lu P.D., Zhang Y., Scheuner D., Kaufman R.J., Sonenberg N., et al. Translational repression mediates activation of nuclear factor-KB by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004; 24: 10161-10168. doi: 10.1128/MCB.24.23.10161-10168.2004

52. Xu C., Bailly-Maitre B., Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005; 115: 2656 -2664. doi:10.1172/JCI26373

53. Myasoedova V.A., Chistiakov D.A., Grechko A.V., Orekhov A.N. Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol. 2018; 123:159-167. doi: 10.1016/j.yjmcc.2018.08.026.

54. Kim R., Emi M., Tanabe K., Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006; 11: 5-13. doi: 10.1007/s10495-005-3088-0

55. Seimon T.A., Nadolski M.J., Liao X., Magallon J. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010; 12 (5):467-82. doi:10.1016/j.cmet.2010.09.010

56. Harding H.P., Zhang Y., Zeng H., Novoa I., Lu P.D., Calfon M., et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11 (3): 619-633. doi:10.1016/s1097-2765(03)00105-9

57. Strassheim D., Karoor V., Stenmark K., Verin A., Gerasimovskaya E. A current view of G protein-coupled receptor-mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. Vessel Plus 2018; 2:21.

58. Nishitoh H., Matsuzawa A., Tobiume K., Saegusa K., Takeda K., Inoue K., et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002; 16: 13451355. doi:10.1101/gad.992302

59. Tabas I., Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011 Mar; 13(3): 184-190. doi: 10.1038/ncb0311-184

60. Parolari A., Poggio P., Myasoedova V., Songia P., Bonalumi G., Pilozzi A., et al. Biomarkers in Coronary Artery Bypass Surgery: Ready for Prime Time and Outcome Prediction. Front Cardiovasc Med. 2016;2:39. doi: 10.3389/fcvm.2015.00039


Для цитирования:


Багери Екта М., Сухоруков В.Н., Маркин А.М., Собенин И.А., Орехов А.Н. Роль стресса эндоплазматического ретикулума в атеросклерозе. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(4):88-94. https://doi.org/10.17802/2306-1278-2020-9-4-88-94

For citation:


Bagheri Ekta M., Sukhorukov V.N., Markin A.M., Sobenin I.A., Orekhov A.N. The role of endoplasmic reticulum stress in atherosclerosis. Complex Issues of Cardiovascular Diseases. 2020;9(4):88-94. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-4-88-94

Просмотров: 345


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)