Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Elemental analysis of valvular and atherosclerotic calcification

https://doi.org/10.17802/2306-1278-2021-10-3-26-33

Abstract

Aim. To analyze the topographic patterns of valvular and atherosclerotic calcification growth.

Methods.           Dysfunctional aortic valves (n = 18) and atherosclerotic plaques (n = 20) were fixed in formalin, postfixed in 1% osmium tetroxide, consecutively stained by 2% osmium tetroxide and 2% uranyl acetate, and embedded into epoxy resin (Epon) with the further grinding and polishing ofthe samples. Upon the counterstaining by lead citrate and sputter coating with carbon, samples were visualized by backscattered scanning electron microscopy. Elemental analysis was conducted via energy-dispersive X-ray spectroscopy. Measurement of Ca/P ratio within the mineral deposits was carried out employing a pool table principle (i.e., in the center of the deposit, in the near and far circumferences (clockwise), and in control regions around the mineral deposit). Topographic patterns of calcifications were modeled using the correlation analysis.             

Results. Significant correlation was revealed between the Ca/P ratio in the deposit center and in the near and far circumferences of deposit in both in valvular (r = 0,35-0,78 - near circumference; r = 0,63-0,69 - far circumference) and atherosclerotic mineral deposits (r = 0,37-0,56 - near circumference; r = 0,48-0,63 - far circumference), suggesting the hierarchical growth of cardiovascular calcification around the initial nucleation sites.

Conclusion.       Valvular and atherosclerotic calcifications development is concentric.

About the Authors

L. A. Bogdanov
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Bogdanov Leo A., junior researcher at the Laboratory of Fundamental Aspects of Atherosclerosis, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Л.А. Богданов заявляет об отсутствии конфликта интересов



N. Yu. Osyaev
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Osyaev Nikolay Yu., MD, research assistant at the Laboratory of Fundamental Aspects of Atherosclerosis, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Н.Ю. Осяев заявляет об отсутствии конфликта интересов



Yu. D. Bogdanova
Federal State Budgetary Educational Institution of Higher Education Kemerovo State University
Russian Federation

Bogdanova Yulia D., master student, Institute of Biology, Ecology, and Natural Resources.

6, Krasnaya St., Kemerovo, 650000


Competing Interests:

Ю.Д. Богданова заявляет об отсутствии конфликта интересов



R. A. Mukhamadiyarov
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Mukhamadiyamv Rinat A. - PhD, senior researcher at the Laboratory of Fundamental Aspects of Atherosclerosis, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Р.А. Мухамадияров заявляет об отсутствии конфликта интересов



A. R. Shabaev
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Shabaev Amin R. - MD, junior researcher at the Laboratory of. Fundamental Aspects of Atherosclerosis, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

А.Р. Шабаев заявляет об отсутствии конфликта интересов



А. V. Evtushenko
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Evtushenko Aleksey V. - Ph.D., Head of the Laboratory of Valvular Heart Disease, Department of Cardiovascular Surgery.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

А.В. Евтушенко заявляет об отсутствии конфликта интересов



A. G. Kutikhin
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kutikhin Anton G., MD, PhD, Head of the Laboratory of Fundamental Aspects of Atherosclerosis, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

А.Г. Кутихин заявляет об отсутствии конфликта интересов



References

1. Shi X., Gao J., Lv Q., Cai H., Wang F., Ye R., Liu X. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020; 11: 56. doi: 10.3389/fphys.2020.00056.

2. Vengrenyuk Y, Carlier S.,. Xanthos S., Cardoso L., Ganatos P, Virmani R., Einav S., Gilchrist L., Weinbaum S. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006; 103(40): 14678-83. doi: 10.1073/pnas.0606310103.

3. Kelly-Arnold A., Maldonado N., Laudier D., Aikawa E., Cardoso L., Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013; 110(26): 10741-6. doi: 10.1073/pnas.1308814110.

4. Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E., Reutelingsperger C., Jacobs M., Mees B., Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol. 2019; 39(7): 13511368. doi: 10.1161/ATVBAHA.119.312787.

5. Halevi R., Hamdan A., Marom G., Lavon K., Ben-Zekry S., Raanani E., Haj-Ali R. A New Growth Model for Aortic Valve Calcification. J Biomech Eng. 2018; 140(10). doi: 10.1115/1.4040338.

6. Lindman B.R., Clavel M.A., Mathieu P, Iung B., Lancellotti P., Otto C.M., Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 2: 16006. doi: 10.1038/nrdp.2016.6.

7. Di Vito A., Donato A., Presta I., Mancuso T., Brunetti F.S., Mastroroberto P, Amorosi A., Malara N., Donato G. Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci. 202; 22(2): 913. doi: 10.3390/ijms22020913.

8. Demer L.L., Tintut Y Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014; 34(4): 715-23. doi:10.1161/ATVBAHA.113.302070.

9. Massera D., Kizer J.R., Dweck M.R. Mechanisms of mitral annular calcification. Trends Cardiovasc Med. 2020 Jul;30(5):289-295. doi: 10.1016/j.tcm.2019.07.011

10. Shroff R.C., McNair R., Skepper J.N., Figg N., Schurgers L. J., Deanfield J., Rees L., Shanahan C.M. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol. 2010; 21: 103-112. doi: 10.1681/ASN.2009060640.

11. Kapustin A.N., Chatrou M.L., Drozdov I., Zheng Y, Davidson S.M., Soong D., Furmanik M., Sanchis P., De Rosales R.T., Alvarez-Hernandez D., Shroff R., Yin X., Muller K., Skepper J.N., Mayr M., Reutelingsperger C.P., Chester A., Bertazzo S., Schurgers L.J., Shanahan C.M. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res. 2015; 116(8): 1312-23. doi: 10.1161/CIRCRESAHA.116.305012.

12. Mayr M., Grainger D., Mayr U., Leroyer A.S., Leseche G., Sidibe A., Herbin O., Yin X., Gomes A., Madhu B., Griffiths J.R., Xu Q., Tedgui A., Boulanger C.M. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet. 2009; 2: 379-388. doi: 10.1161/CIRCGENETICS.108.842849.

13. New S.E., Goettsch C., Aikawa M., Marchini J.F., Shibasaki M. , Yabusaki K., Libby P, Shanahan C.M., Croce K., Aikawa E. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013; 113: 72-77. doi: 10.1161/CIRCRESAHA.113.301036.

14. Cote N., El Husseini D., Pepin A., Guauque-Olarte S., Ducharme Vi, Bouchard-Cannon P, Audet A, Fournier D, Gaudreault N. Derbali H, McKee MD, Simard C, Despres JP, Pibarot P, Bosse Y, Mathieu P. ATP acts as a survival signal and prevents the mineralization of aortic valve. J Mol Cell Cardiol. 2012; 52: 1191-202.

15. Durham A.L., Speer M.Y., Scatena M., Giachelli C.M., Shanahan C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 2018; 114(4): 590-600. doi: 10.1093/cvr/cvy010.

16. Allahverdian S., Chaabane C., Boukais K., Francis G.A., Bochaton-Piallat M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 2018; 114(4): 540-550. doi: 10.1093/cvr/cvy022.

17. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. (Oxf). 2015; 214(1): 33-50. doi: 10.1111/apha.12466.

18. Reynolds J.L., Skepper J.N., McNair R., Kasama T., Gupta K., Weissberg PL., Jahnen-Dechent W., Shanahan C.M. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005; 16: 2920-2930. doi: 10.1681/ASN.2004100895.

19. Ambale-Venkatesh B., Yang X., Wu C.O., Liu K., Hundley W.G., McClelland R., Gomes A.S., Folsom A.R., Shea S., Guallar E., Bluemke D.A., Lima J.A.C. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017; 121(9): 1092-1101. doi: 10.1161/CIRCRESAHA.117.311312.

20. Foley R.N., Collins A.J., Herzog C.A., Ishani A., Kalra PA. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20(2): 397-404. doi: 10.1681/ASN.2008020141.

21. Chen J., Peacock J.R., Branch J., David Merryman W. Biophysical analysis of dystrophic and osteogenic models of valvular calcification. J Biomech Eng 2015; 137 (2): 020903. DOI: 10.1115/1.4029115.

22. Hutcheson J.D., Goettsch C., Bertazzo S., Maldonado N., Ruiz J.L., Goh W., Yabusaki K., Faits T., Bouten C., Franck G., Quillard T., Libby P., Aikawa M., Weinbaum S., Aikawa E. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016; 15(3): 335-43. doi: 10.1038/nmat4519.

23. Burgmaier M., Milzi A., Dettori R., Burgmaier K., Marx N., Reith S. Colocalization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT. PLoS One. 2018; 13(10): e0205984. doi: 10.1371/journal.pone.0205984.

24. Fuery M.A., Liang L., Kaplan F.S., Mohler E.R. 3rd. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone. 2018; 109: 28-34. doi: 10.1016/j.bone.2017.07.006.

25. Carino A., Ludwig C., Cervellino A., Muller E., Testino A. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling. Acta Biomater. 2018; 74: 478-488. doi: 10.1016/j.actbio.2018.05.027.

26. Lee J.S., Morrisett J.D., Tung C.H. Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis. 2012; 224(2): 340-7. doi: 10.1016/j.atherosclerosis.2012.07.023.

27. Cheng C.L., Chang H.H., Huang P.J., Wang W.C., Lin S.Y. Ex vivo assessment of valve thickness/ calcification of patients with calcific aortic stenosis in relation to in vivo clinical outcomes. J Mech Behav Biomed Mater. 2017; 74: 324-332. doi: 10.1016/j.jmbbm.2017.06.020.

28. Cottignoli V, Relucenti M., Agrosi G., Cavarretta E., Familiari G., Salvador L., Maras A. Biological niches within human calcified aortic valves: towards understanding of the pathological biomineralization process. Biomed Res Int. 2015; 2015: 542687. doi: 10.1155/2015/542687.

29. Mangialardo S., Cottignoli V., Cavarretta E., Salvador L., Postorino P., Maras A. Pathological biominerals: raman and infrared studies of bioapatite deposits in human heart valves. Appl Spectrosc. 2012; 66(10): 1121-7. doi: 10.1366/12-06606.

30. Cottignoli V, Cavarretta E., Salvador L., Valfre C., Maras A. Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Patholog Res Int. 2015; 2015: 342984. doi: 10.1155/2015/342984.

31. Bischetti S., Scimeca M., Bonanno E., Federici M., Anemona L., Menghini R., Casella S., Cardellini M., Ippoliti A., Mauriello A. Carotid plaque instability is not related to quantity but to elemental composition of calcification. Nutr Metab Cardiovasc Dis. 2017; 27(9): 768-774. doi: 10.1016/j.numecd.2017.05.006.

32. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F., Bottio T., Reul H., Valente M. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. J Thorac Cardiovasc Surg. 2001; 121(3): 500-9. doi: 10.1067/mtc.2001.112464.


Review

For citations:


Bogdanov L.A., Osyaev N.Yu., Bogdanova Yu.D., Mukhamadiyarov R.A., Shabaev A.R., Evtushenko А.V., Kutikhin A.G. Elemental analysis of valvular and atherosclerotic calcification. Complex Issues of Cardiovascular Diseases. 2021;10(3):26-33. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-26-33

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)