Cardiac progenitor cell sheets secrete proangiogenic growth factors and locally activate capillarogenesis after infarction
https://doi.org/10.17802/2306-1278-2021-10-3-34-43
Abstract
Background. The application of tissue-engineered constructs that simulate the natural microenvironment of cells, maintain their viability and functional properties, is a new promising route for the treatment of ischemic diseases. However, the mechanisms that ensure the effectiveness of this type of treatment and the principles of choosing the optimal population of progenitor cells remain poorly understood.
Aim. To study the profile of secretion of proangiogenic growth factors of cardiosphere-derived cell sheet (CS), and to study the effect of their transplantation on postinfarction myocardial vascularization.
Methods. Assembly of cardiosphere-derived cell sheets were performed on thermosensitive culture plates. Characterization of cell sheets was performed using immunofluorescence staining and a commercial kit for the determination of proangiogenic factors “Mouse Angiogenesis Antibody Array”. The evaluation of the angiogenic properties of the cell graft in vivo was carried out using a rat myocardial infarction model.
Results. It was found that the cardiosphere-derived cell sheet secrete factors involved in the regulation of vasculo-/angiogenesis. At the same time, the cultivation of cell sheets under hypoxic conditions (3% O2) led to an increase in the secretion of proangigenic factors VEGF and pIgF, fGf-1, FGF-2, endothelin-1, as well as MMP-9, which is involved in extracellular matrix remodeling. Cell sheet transplantation on the epicardial surface of the heart after myocardial infarction ensures cell viability and local increase in capillarization of the damaged area.
Conclusion. Thus, the application of cardiosphere-derived cell sheets, which have proangiogenic properties and ability to maintain post transplantation cell survival, can be considered as a promising approach for the development of new methods of therapy for heart diseases
About the Authors
K. V. DergilevRussian Federation
Dergilev Konstantin V., PhD, Leading Researcher at the Laboratory of Angiogenesis, Institute of Experimental Cardiology.
3rd Cherepkovskaya St., 15 a, Moscow, 121552
Competing Interests:
К.В. Дергилев заявляет об отсутствии конфликта интересов
Z. I. Tsokolaeva
Russian Federation
Tsokolaeva ZoyaI., PhD, Senior Researcher at the Laboratory of Angiogenesis, Institute of Experimental Cardiology.
3rd Cherepkovskaya St., 15 a, Moscow, 121552; 777, Lytkarino, 140083
Competing Interests:
З.И. Цоколаева заявляет об отсутствии конфликта интересов
Yu. D. Vasilets
Russian Federation
Vasilets Yulia D., Laboratory Assistant at the Laboratory of Angiogenesis, Institute of Experimental Cardiology.
3rd Cherepkovskaya St., 15 a, Moscow, 121552
Competing Interests:
Ю.Д. Василец заявляет об отсутствии конфликта интересов
I. B. Beloglazova
Russian Federation
Beloglazova Irina B., PhD, Senior Researcher at the Laboratory of Angiogenesis, Institute of Experimental Cardiology.
3rd Cherepkovskaya St., 15 a, Moscow, 121552
Competing Interests:
И.Б. Белоглазова заявляет об отсутствии конфликта интересов
E. V. Parfenova
Russian Federation
Parfenova Elena V., Corresponding Member of the Russian Academy of Sciences, PhD, Professor, Head of the Laboratory of Angiogenesis, Institute of Experimental Cardiology, NMRCC; Head of the Laboratory of Postgenomic Technologies in Medicine, Faculty of Fundamental Medicine, M.V Lomonosov MSU.
3rd Cherepkovskaya St., 15 a, Moscow, 121552; 1, Leninskie gory, Moscow, 119991
Competing Interests:
Е.В. Парфенова заявляет об отсутствии конфликта интересов
References
1. Tomasoni D., Adamo M., Anker M.S., von Haehling S., Coats A.J.S., Metra M. Heart failure in the last year: progress and perspective. ESC Heart Fail. 2020;7(6):3505-30. doi: 10.1002/ehf2.13124.
2. Fattouch K., Guccione F. The Role of Surgical Treatment of Severe Functional Mitral Regurgitation in Heart Failure.Cardiol Clin. 2021;39(2):185-188. doi: 10.1016/j.ccl.2021.01.012.
3. Hetzer R., Javier M.F.D.M., Wagner F., Loebe M., Javier Delmo E.M. Organ-saving surgical alternatives to treatment of heart failure. Cardiovasc Diagn Ther. 2021;11(1):213-225. doi: 10.21037/cdt-20-285.
4. Korpela H., Jarvelainen N., Siimes S., Lampela J., Airaksinen J., Valli K., Turunen M., Pajula J., Nurro J., Yla-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med. 2021;290(3):567-582. doi: 10.1111/joim.13308.
5. Zachary I., Morgan R.D. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2011;97(3):181-9. doi: 10.1136/hrt.2009.180414.
6. Dergilev K.V, Vasilets Iu.D., Tsokolaeva Z.I., et al. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic Archive. 2020; 92 (4): 111-120 (in Russian). doi: 10.26442/00403660.2020.04.000634.
7. Mancuso A., Barone A., Cristiano M.C., Cianflone E., Fresta M., Paolino D. Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci. 2020;21(20):7701. doi: 10.3390/ijms21207701.
8. Wang L., Serpooshan V., Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med. 2021;8:621781. doi: 10.3389/fcvm.2021.621781.eCollection 2021.
9. Wu X., Wu S., Kawashima H., Hara H., Ono M., Gao C., Wang R., Lunardi M., Sharif F., Wijns W., Serruys P. W., Onuma Y. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Rev Med Devices. 2021;18(4):351-365. doi: 10.1080/17434440.2021.1904894.
10. Dergilev K.V, Shevchenko E.K., Tsokolaeva Z.I., Beloglazova I.B., Zubkova E.S., Boldyreva M.A., Menshikov M.Y., Ratner E.I., Penkov D., Parfyonova Y.V. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci. 2020;21(24):9603. doi: 10.3390/ijms21249603.
11. Boldyreva M.A., Shevchenko E.K., Molokotina Y.D., Makarevich P.I., Beloglazova I.B., Zubkova E.S., Dergilev K.V, Tsokolaeva Z.I., Penkov D., Hsu M.N., Hu Y.C., Parfyonova Y.V. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int J Mol Sci. 2019;20(12):3088. doi: 10.3390/ijms20123088.
12. Dergilev K., Tsokolaeva Z., Makarevich P, Beloglazova I., Zubkova E., Boldyreva M. E., Ratner E., Dyikanov D., Menshikov M., Ovchinnikov A., Ageev F. Parfyonova Ye. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. Biomed Res Int. 2018;2018:3536854. doi: 10.1155/2018/3536854.
13. Ashur C., Frishman W.H.Cardiosphere-Derived Cells and Ischemic Heart Failure. Cardiol Rev. 2018;26(1):8-21. doi: 10.1097/CRD.0000000000000173.
14. Dergilev K.V, Vasilets Yu.D., Tsokolaeva Z.I., Parfenova E.V Transforming Growth Factor p 1 (TGFp1) regulates the assembly of cardiac spheroids. Cell Technologies in Biology and Medicine. 2020;4:262-266 (in Russian). doi: 10.47056/1814-3490-2020-4-262-266.
15. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A., Talitskiy K.A., Stepanova V.V., Johnstone B.H., Rahmat-Zade T.M., Kapustin A.N., Tkachuk V.A., March K.L., Parfyonova Y.V Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol Ther. 2007;15(11):1939-46. doi: 10.1038/sj.mt.6300262.
16. Grunewald M., Avraham I., Dor Y, Bachar-Lustig E., Itin A., Jung S., Chimenti S., Landsman L., Abramovitch R., Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124(1):175-89. doi: 10.1016/j.cell.2005.10.036.
17. Liu Z., Mikrani R., Zubair H.M., Taleb A., Naveed M., Baig M.M.F.A., Zhang Q., Li C., Habib M., Cui X., Sembatya K.R., Lei H., Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol. 2020;876:173049. doi: 10.1016/j.ejphar.2020.173049.
18. Hematti P. Role of Extracellular Matrix in Cardiac Cellular Therapies. Adv Exp Med Biol. 2018;1098:173-188. doi: 10.1007/978-3-319-97421-7_9.
19. Behёn H., Evens L., Hendrikx M., Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev. 2021 Jun 11. doi: 10.1002/med.21839. Online ahead of print.
20. Zhang M., Methot D., Poppa V., Fujio Y., Walsh K., Murry C.E. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33(5):907-21. doi: 10.1006/jmcc.2001.1367.
21. Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412. doi: 10.1155/2015/549412.
22. Kelly B.D., Hackett S.F., Hirota K., Oshima Y., Cai Z., Berg-Dixon S., Rowan A., Yan Z., Campochiaro PA., Semenza G.L. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93(11):1074-81. doi: 10.1161/01.RES.0000102937.50486.1B.
23. Ceradini D.J., Kulkarni A.R., Callaghan M.J., Tepper O.M., Bastidas N., Kleinman M.E., Capla J.M., Galiano R.D., Levine J.P., Gurtner G.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858-64. doi: 10.1038/nm1075.
24. Simon M.P, Tournaire R., Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol. 2008;217(3):809-18. doi: 10.1002/jcp.21558.
25. Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J.M., Asahara T. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434-8. doi: 10.1038/7434.
26. Kinnaird T., Stabile E., Burnett M.S., Epstein S. E. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95(4):354-63. doi: 10.1161/01.RES.0000137878.26174.66.
27. Grant M.B., May W.S., Caballero S., Brown G.A., Guthrie S.M., Mames R.N., Byrne B.J., Vaught T., Spoerri P.E., Peck A.B., Scott E.W. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002;8(6):607-12. doi: 10.1038/nm0602-607.
28. Rehman J., Li J., Orschell C.M., March K.L. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164-9. doi: 10.1161/01.cir.0000058702.69484.a0.
29. Ibrahim A.G., Cheng K., Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2(5):606-19. doi: 10.1016/j.stemcr.2014.04.006.
30. Hirai K., Ousaka D., Fukushima Y., Kondo M., Eitoku T. , Shigemitsu Y., Hara M., Baba K., Iwasaki T., Kasahara S., Ohtsuki S., Oh H. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med. 2020 Dec 9;12(573):eabb3336. doi: 10.1126/scitranslmed.abb3336.
31. Bittle G.J., Morales D., Pietris N., Parchment N., Parsell D., Peck K., Deatrick K.B., Rodriguez-Borlado L., Smith R.R., Marban L., Kaushal S. Exosomes isolated from human cardiosphere-derived cells attenuate pressure overload-induced right ventricular dysfunction. J Thorac Cardiovasc Surg. 2021: 162(3):975-986.e6. doi: 10.1016/j.jtcvs.2020.06.154.
32. Malliaras K., Li T.S., Luthringer D., Terrovitis J., Cheng K., Chakravarty T., Galang G., Zhang Y, Schoenhoff F., Van Eyk J., Marban L., Marban E. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125(1):100-12. doi: 10.1161/CIRCULATIONAHA.111.042598.
33. Chakravarty T., Henry T.D., Kittleson M., Lima J., Siegel R.J., Slipczuk L., Pogoda J.M., Smith R.R., Malliaras K., Marban L., Ascheim D.D., Marban E., Makkar R.R. Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: the Dilated cardiomYopathy iNtervention with Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial. EuroIntervention. 2020;16(4):e293-e300. doi: 10.4244/EIJ-D-19-00035.
Review
For citations:
Dergilev K.V., Tsokolaeva Z.I., Vasilets Yu.D., Beloglazova I.B., Parfenova E.V. Cardiac progenitor cell sheets secrete proangiogenic growth factors and locally activate capillarogenesis after infarction. Complex Issues of Cardiovascular Diseases. 2021;10(3):34-43. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-34-43