Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Activation of transcriptional factor ZBTB16 expression during osteogenic differentiation of mesenchymal stem cells

https://doi.org/10.17802/2306-1278-2021-10-3-44-55

Abstract

Aim. Calcified aortic valve stenosis is the third leading cause of cardiovascular disease. The mechanisms underlying this process remain unclear, however, it is known that they are largely similar to the formation of bone tissue during embryonic development, as well as in the postnatal period during regeneration. There is evidence for the             involvement of Zinc Finger and BTB Domain Containing 16 (ZBTB16) in skeletal development. At the same time, a number of studies carried out on different types of cell cultures indicate a contradictory and ambiguous effect of ZBTB16 on RUNX2 expression. Thus, the aim of this study was to investigate the dynamic variability of ZBTB16 expression, as well as its role in aortic valve calcification.

Methods. The study used different types of mesenchymal cells cultures - aortic valve interstitial cells, umbilical cord mesenchymal stem cells, ligament stem cells and dental pulp stem cells. Changes in ZBTB16 and RUNX2 expression levels                under the influence of osteogenic stimuli, as well as during exogenous activation of ZBTB16, were analyzed using real-time PCR. Expression levels of some osteogenic markers - BMP2,4, COL1A1, IBSP, DLX2, PDK4 - were analyzed in the interstitial cells of the aortic valve.

Results. The results of the study indicate that a significant increase in the expression of ZBTB16 is observed during the induction of osteogenic differentiation of various cell cultures - interstitial cells of the aortic valve, mesenchymal stem cells of           the umbilical cord, stem cells of the ligaments and dental pulp. Apparently, the processes of osteogenic differentiation of aortic valve interstitial cells, in the presence of dexamethasone in cultivation medium, are provided through RUNX2-dependent signaling for the further activation of osteogenic markers.

Conclusion. The study of modulation of cellular signals by ZBTB16, when activating or suppressing the work of a transcriptional factor, in the future may bring us closer to the ability to enhance the regenerative abilities of bone tissue cells or, conversely, prevent calcification of the aortic valve tissues.

About the Authors

D. S. Semenova
Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State University; Federal State Budgetary Institution of Science Institute of Cytology of the Russian Academy of Sciences; Federal State Budgetary Institution V.A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation
Russian Federation

Semenova Daria S., Research Engineer at Saint-Petersburg SU; Junior Researcher at the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science Institute of Cytology of the RAS; Laboratory Assistant at the Laboratory of Molecular Cardiology and Genetics, SBI V.A. Almazov NMRC.

Universitetskaya nab., 7-9, Saint Petersburg, 199034; Tikhoretskiy Ave., 4, Saint Petersburg, 194064; Akkuratova St., 2, Saint Petersburg, 197341


Competing Interests:

Д.С. Семенова заявляет об отсутствии конфликта интересов



A. M. Kiselev
Federal State Budgetary Institution of Science Institute of Cytology of the Russian Academy of Sciences
Russian Federation

Kiselev Artem M., Researcher at the Laboratory of Regenerative Biomedicine.

Tikhoretskiy Ave., 4, Saint Petersburg, 194064


Competing Interests:

А.М. Киселев заявляет об отсутствии конфликта интересов



A. B. Malashicheva
Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State University; Federal State Budgetary Institution of Science Institute of Cytology of the Russian Academy of Sciences; Federal State Budgetary Institution V.A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation
Russian Federation

Malashicheva Anna B., PhD, Head of the Laboratory of Regenerative Biomedicine Institute of Cytology of the RAS; Head of the Laboratory of Molecular Cardiology and Genetics, Institute of Molecular Biology and Genetics, V.A. Almazov National Medical Research Center; Associate Professor at the Department of Embryology, Faculty of Biology Saint-Petersburg SU.

Universitetskaya nab., 7-9, Saint Petersburg, 199034; Tikhoretskiy Ave., 4, Saint Petersburg, 194064; Akkuratova St., 2, Saint Petersburg, 197341


Competing Interests:

А.Б. Малашичева заявляет об отсутствии конфликта интересов



References

1. Stewart B.F., Siscovick D., Lind B.K., Gardin J.M., Gottdiener J.S., Smith V.E., Kitzman D.W., Otto C.M. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. J Am Coll Cardiol; 1997;29:630-4.

2. Mathieu P, Boulanger M.-C. Basic Mechanisms of Calcific Aortic Valve Disease. Can J Cardiol. 2014;30(9):982-93. doi: 10.1016/j.cjca.2014.03.029.

3. Fuery M.A., Liang L., Kaplan F.S., Mohler E.R. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone 2018r;109:28-34. doi: 10.1016/j.bone.2017.07.006.

4. Soor G.S., Vukin I., Leong S.W., Oreopoulos G., Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology [Internet]. 2008;40:385-91. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0031302516323650 [cited 2018 Feb 28]

5. Demer LL, Tintut Y. Inflammatory , metabolic , and genetic mechanisms of vascular calcification . PubMed Commons. Arter Thromb Vasc Biol. 2014;34:715-23.

6. Li C.J., Madhu V, Balian G., Dighe A.S., Cui Q. CrossTalk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. J Cell Physiol. 2015;230(11):2671-82. doi: 10.1002/jcp.24983

7. Kroeze R.J., Knippenberg M., Helder M.N. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods Mol Biol. 2011;702:233-48. doi: 10.1007/978-1-61737-960-4_17

8. Khanna-Jain R., Vuorinen A., Sandor G.K., Suuronen R., Miettinen S. Vitamin D(3) metabolites induce osteogenic differentiation in human dental pulp and human dental follicle cells. J Steroid Biochem Mol Biol. 2010t;122(4):133-41. doi: 10.1016/j.jsbmb.2010.08.001. 1

9. Elashry M.I., Baulig N., Heimann M., Bernhardt C., Wenisch S., Arnhold S. Osteogenic differentiation of equine adipose tissue derived mesenchymal stem cells using CaCl2. Res Vet Sci. 2018;117:45-53. doi: 10.1016/j.rvsc.2017.11.0102/

10. Langenbach F., Handschel J. Effects of dexamethasone, ascorbic acid and р-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther [Internet]. BioMed Central; 2013;4:117. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24073831 [cited 2018 Nov 21]

11. Hamidouche Z., Hay E., Vaudin P., charbord P., Schule R., Marie P. J., Fromigue O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J. 2008;22(11):3813-22. doi: 10.1096/fj.08-106302/

12. Franceschi R.T., Iyer B.S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res;[1992;7(2):235-46. doi: 10.1002/jbmr.5650070216./

13. Fatherazi S., Matsa-Dunn D., Foster B.L., Rutherford R.B., Somerman M.J., Presland R.B. Phosphate regulates osteopontin gene transcription. J Dent Res [Internet]. Intern. and American Associations for Dental Research; 2009; 88(1): 39-44. doi: 10.1177/0022034508328072

14. Almalki S.G., Agrawal D..K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation. 2016;92(1-2):41-51. doi: 10.1016/j.diff.2016.02.005./

15. Felthaus O., Gosau M., Morsczeck C. ZBTB16 Induces Osteogenic Differentiation Marker Genes in Dental Follicle Cells Independent From RUNX2 . J Periodontol. 2014;85(5):e144-51. doi: 10.1902/jop.2013.130445.

16. Zhang T., Xiong H., Kan L.X., Zhang C.K., Jiao X.F., Fu G., Zhang Q.-H., L L. u,. Tong J.-H, B.-W.Gu, M.Yu, Liu J.-X., Licht J., Waxman S., Zelent A., Chen E., Chen S.-J.Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene. Proceedings of the National Academy of Sciences Sep 1999, 96 (20) 11422-11427; DOI: 10.1073/pnas.96.20.11422

17. Fischer S., Kohlhase J., Bohm D., Schweiger B., Hoffmann D., Heitmann M., Horsthemke B., Wieczorek D. Biallelic loss of function of the promyelocytic leukaemia zinc finger (PLZF) gene causes severe skeletal defects and genital hypoplasia. J Med Gene. 2008;45(11):731-7. doi: 10.1136/jmg.2008.059451.3

18. Inoue I., Ikeda R., Tsukahara S. Current topics in pharmacological research on bone metabolism: Promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-a-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. J. Pharmacol. Sci. 2006;100(3):205-10. doi: 10.1254/jphs.fmj05004x5.

19. Hemming S., Cakouros D., Vandyke K., Davis M.J., Zannettino A.C.W., Gronthos S. Identification of novel EZH2 targets regulating osteogenic differentiation in mesenchymal stem cells. Stem Cells Dev. 2016;25(12):909-21. doi: 10.1089/scd.2015.0384

20. Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int. 2006;78(2):98-102. doi: 10.1007/s00223-005-0146-0.

21. Kato M., Patel M.S., Levasseur R., Lobov I., Chang B. H., Glass D.A. 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303-14. doi: 10.1083/jcb.200201089.

22. Morsczeck C., Schmalz G., Reichert T.E., Vollner F., Saugspier M., Viale-Bouroncle S., Driemel O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig. 2009;13(4):383-91. doi: 10.1007/s00784-009-0260-x.

23. Bilibina A.A., Anisimov S.V., Zaritskey A.Y., Dmitrieva R.I., Minullina I.R., Tarasova O.V. Bone marrow-and subcutaneous adipose tissue-derived mesenchymal stem cells: Differences and similarities. [Internet]. Cell Cycle. 2012;11:1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22189711[cited 2020 Apr 27]

24. Semenova D.S., Kostina A.S., Mustaeva A.M., Klauzen P.E., Dobrynin M.A., Boyarskaya N.V., Dombrovskaya Yu.A., Malashicheva A.B., Enukashvily N.I. Notch-dependent activation of periodontal cells osteogenic potential. Translational Medicine. 2020;7(2):21-32. (In Russian) https://doi.org/10.18705/2311-4495-2020-7-2-21-32

25. Malashicheva A., Kanzler B., Tolkunova E., Trono D., Tomilin A. Lentivirus as a tool for lineage-specific gene manipulations. Genesis. 2007;45(7):456-9. doi: 10.1002/dvg.20313.

26. Heo J.S., Choi Y., Kim H.-S., Kim H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115-25. doi: 10.3892/ ijmm.2015.2413.

27. Wasim M., Carlet M., Mansha M., Greil R., Ploner C. , Trockenbacher A., Rainer J., Kofler R. PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic leukemia, intrferes with glucocorticoid-induced apoptosis. J Steroid Biochem Mol Biol. 2010;120(4-5):218-27. doi: 10.1016/j.jsbmb.2010.04.019.

28. Kolesnichenko M., Vogt P.K. Understanding PLZF: Two transcriptional targets, REDD1 and smooth muscle a-actin, define new questions in growth control, senescence, selfrenewal and tumor suppression. Cell Cycle. 2011; 1;10(5):771-5. doi: 10.4161/cc.10.5.14829.

29. Felicetti F., Bottero L., Felli N., Mattia G., Labbaye C., Alvino E., Peschle C., Colombo M.P, Care A. Role of PLZF in melanoma progression. Oncogene. 2004;23(26):4567-76. doi: 10.1038/sj.onc.120759/

30. Vincent-Fabert C, Platet N, Vandevelde A, Poplineau M, Koubi M, Finetti P, et al. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood. 2016;127(15):1881-5. doi: 10.1182/blood-2015-09-666974

31. Ikeda R., Yoshida K., Tsukahara S., Sakamoto Y., Tanaka H., Furukawa K., Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem. 2005;280(9):8523-30. doi: 10.1074/jbc.M409442200.


Review

For citations:


Semenova D.S., Kiselev A.M., Malashicheva A.B. Activation of transcriptional factor ZBTB16 expression during osteogenic differentiation of mesenchymal stem cells. Complex Issues of Cardiovascular Diseases. 2021;10(3):44-55. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-44-55

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)