Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Current status, challenges and perspectives of mesenchymal stem cell-based therapy for cardiac regeneration

https://doi.org/10.17802/2306-1278-2021-10-3-72-78

Abstract

Modern methods of treating heart failure are similar to the palliative care, since they mostly relieve the symptoms of the disease. The discovery of resident cardiac stem cells gave impetus to the development of “second generation” cell therapy, which quickly moved from animal research to clinical trials with critically ill patients. Many cardiac side population cells have been identified to have stem cells characteristics and some additional individual characteristics, both in vitro and in vivo. The results of clinical studies demonstrated that the stem cell treatment is safe, however, this type of cell-based therapy did not restore cardiac function. Its effects were limited to mildly improving left ventricular systolic pressure and reducing the scar area. Despite that, the promising nature of these therapeutic approaches for heart diseases have contributed to the development of next-generation cell therapy.

About the Authors

P. M. Docshin
Federal State Budgetary Institution V.A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation; Federal State Budgetary Institution of Science Institute of Cytology, Russian Academy of Sciences
Russian Federation

Akkuratova St., 2, St. Petersburg, 197341; Tikhoretskiy Ave., 4, St. Petersburg, 19406


Competing Interests:

П.М. Докшин заявляет об отсутствии конфликта интересов



A. Bairqdar
Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State University
Russian Federation

Universitetskaya nab., 7-9, St. Petersburg, 199034


Competing Interests:

А. Бейркдар заявляет об отсутствии конфликта интересов



A. B. Malashicheva
Federal State Budgetary Institution V.A. Almazov National Medical Research Center of the Ministry of Health of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State University; Federal State Budgetary Institution of Science Institute of Cytology, Russian Academy of Sciences
Russian Federation

Akkuratova St., 2, St. Petersburg, 197341; Universitetskaya nab., 7-9, St. Petersburg, 199034; Tikhoretskiy Ave., 4, St. Petersburg, 194064


Competing Interests:

А.Б. Малашичева заявляет об отсутствии конфликта интересов



References

1. World Health Organization. Cardiovascular diseases (CVDs) [Internet]. 2021 Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [cited 2021 Jun 11].

2. Vagnozzi R.J., Maillet M., Sargent M.A., Khalil H., Johansen A.K.Z., Schwanekamp J.A., York A.J., Huang V, Nahrendorf M., Sadayappan S., Molkentin J.D. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577(7790):405-409. doi: 10.1038/s41586-019-1802-2.

3. Shadrin I.Y., Allen B.W., Qian Y, Jackman C.P., Carlson A.L., Juhas M.E., Bursac N.Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun. 2017;8(1):1825.

4. Stehlik J., Kobashigawa J., Hunt S.A., Reichenspurner H., Kirklin J.K. Honoring 50 Years of Clinical Heart Transplantation in Circulation: In-Depth State-of-the-Art Review. Circulation. 2018;137(1):71-87.

5. Li L.L., T.-S. Mini Review: Recent Advances in the Cell-Based Therapies for Cardiac Regeneration. Curr Stem Cell Res Ther. 2020;15(8):649-660. doi: 10.2174/1574888X15666200102103755.

6. Segers V.F.M., Lee R.T. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937-42.

7. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S.M., Li B., Pickel J., McKay R., Nadal-Ginard B., Bodine D.M., Leri A., Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701-5. doi: 10.1038/35070587.

8. van Berlo J.H., Kanisicak O., Maillet M., Vagnozzi R.J., Karch J., Lin S.C., Middleton R.C., Marban E., Molkentin J.D. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337-41. doi: 10.1038/nature13309.

9. Beltrami A.P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-76. doi: 10.1016/s0092-8674(03)00687-1.

10. Chong J.J., Yang X., Don C.W., Minami E., Liu Y.W., Weyers J.J., Mahoney WM., Van Biber B., Cook S.M., Palpant N.J., Gantz J.A., Fugate J.A., Muskheli V, Gough G.M., Vogel K.W., Astley C.A., Hotchkiss C.E., Baldessari A., Pabon L., Reinecke H., Gill E.A., Nelson V, Kiem H.P., Laflamme M.A., Murry C.E. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273-7. doi: 10.1038/nature13233.

11. Keith M.C.L, Bolli R. “String Theory” of c-kitpos Cardiac Cells. Circ Res [Internet]. 2015 Mar 27;116(7):1216-30. Available from: https://doi.org/10.n61/CIRCRESAHA.n6.305557. [cited 2021 Jun 11].

12. Gude N.A., Sussman M.A. Cardiac regenerative therapy: Many paths to repair. Trends Cardiovasc Med. 2020;30(6):338-343. doi: 10.1016/j.tcm.2019.08.009

13. Santini M.P., Forte E., Harvey R.P, Kovacic J.C. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development. 2016;143(8):1242-58. doi: 10.1242/dev.111591.

14. Li M., Naqvi N., Yahiro E., Liu K., Powell PC., Bradley W.E., Martin D.I., Graham R.M., Dell'Italia L.J., Husain A. c-kit is required for cardiomyocyte terminal differentiation. Circ Res. 2008;102(6):677-85. doi: 10.1161/CIRCRESAHA.107.161737.

15. Barry R Davis. Combination of Mesenchymal and C-kit+ Cardiac Stem Cells as Regenerative Therapy for Heart Failure (CONCERT-HF). A Phase II, Randomized, Placebo-Controlled Study of the Safety, Feasibility, & Efficacy of Autologous Mesenchymal Stem Cells & C-kit+ Cardiac Stem Cells, Alone or in Combination, Administered Transendocardially in Subjects With Ischemic HF. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT02501811. [cited 2021 Jun 11].

16. Chong J.J., Chandrakanthan V, Xaymardan M., Asli N. S., Li J., Ahmed I., Heffernan C., Menon M.K., Scarlett C.J., Rashidianfar A., Biben C., Zoellner H., Colvin E.K., Pimanda J.E., Biankin A.V, Zhou B., Pu W.T., Prall O.W, Harvey R.P. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9(6):527-40. doi: 10.1016/j.stem.2011.10.002.

17. Soriano P The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 1997;124(14):2691-700.

18. Ball S.G., Worthington J.J., Canfield A.E., Merry C.L.R., Kielty C.M. Mesenchymal stromal cells: Inhibiting PDGF receptors or depleting fibronectin induces mesodermal progenitors with endothelial potential. Stem Cells. 2014;32(3):694-705.

19. Noseda M., Harada M., McSweeney S., Leja T., Belian E., Stuckey D.J., et al. PDGFRa demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun. 2015; 6: 6930. doi:10.1038/ncomms7930

20. Cai C.L., Liang X., Shi Y, Chu P.H., Pfaff S.L., Chen J., Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5(6):877-89. doi: 10.1016/ s1534-5807(03)00363-0.

21. Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR. Islet1 cardiovascular progenitors: A single source for heart lineages? Development. 2008; 135: 193-205. doi:10.1242/dev.001883

22. Laugwitz K.L., Moretti A., Lam J., Gruber P., Chen Y., Woodard S., Lin L.Z., Cai C.L., Lu M.M., Reth M., Platoshyn O. , Yuan J.X., Evans S., Chien K.R. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647-53. doi: 10.1038/nature03215.

23. Menasche P., Vanneaux V., Hagege A., Bel A., Cholley B., Parouchev A., et al. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol. 2018 Jan;71(4):429-38. doi: 10.1016/j.jacc.2017.11.047.

24. Smith R.R., Barile L., Cho H.C., Leppo M.K., Hare J.M., Messina E., et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896-908.

25. Oh H., Bradfute S.B., Gallardo T.D., Nakamura T., Gaussin V., Mishina Y., Pocius J., Michael L.H., Behringer R.R., Garry D.J., Entman M.L., Schneider M.D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100(21):12313-8. doi: 10.1073/pnas.2132126100.

26. Li T.S., Cheng K., Lee S.T., Matsushita S., Davis D., Malliaras K., Zhang Y., Matsushita N., Smith R.R., Marban E. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells. 2010;28(11):2088-98. doi: 10.1002/stem.532.

27. Ye J., Boyle A.J., Shih H., Sievers R.E., Wang Z.E., Gormley M., Yeghiazarians Y CD45-positive cells are not an essential component in cardiosphere formation. Cell Tissue Res. 2013;351(1):201-5. doi: 10.1007/s00441-012-1511-8.

28. Malliaras K., Makkar R.R., Smith R.R., Cheng K., Wu E., Bonow R.O., Marban L., Mendizabal A., Cingolani E., Johnston P.V., Gerstenblith G., Schuleri K.H., Lardo A.C., Marban E. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110-22. doi: 10.1016/j.jacc.2013.08.7

29. Makkar R.R., Smith R.R., Cheng K., Malliaras K., Thomson L.E., Berman D., Czer L.S., Marban L., Mendizabal A., Johnston PV, Russell S.D., Schuleri K.H., Lardo A.C., Gerstenblith G., Marban E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895-904. doi: 10.1016/S0140-6736(12)60195-0.

30. Makkar R.R., Kereiakes D.J., Aguirre F., Kowalchuk G., Chakravarty T., Malliaras K., Francis G.S., Povsic T.J., Schatz R., Traverse J.H., Pogoda J.M., Smith R.R., Marban L., Ascheim D.D., Ostovaneh M.R., Lima J.A.C., DeMaria A., Marban E., Henry T.D. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur Heart J. 2020;41(36):3451-3458. doi: 10.1093/eurheartj/ehaa541.

31. Balbi C., Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38(11):1387-1399. doi: 10.1002/stem.3261

32. Liu C., Han D., Liang P, Li Y., Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol. 2021; 9: 636136. . doi: 10.3389/fcell.2021.636136

33. Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells. 2021; 13(4): 236-259. doi: 10.4252/wjsc.v13.i4.236

34. Vagnozzi R.J., Maillet M., Sargent M.A., Khalil H., Johansen A.K.Z., Schwanekamp J.A., York A.J., Huang V., Nahrendorf M., Sadayappan S., Molkentin J.D. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577(7790):405-409. doi: 10.1038/s41586-019-1802-2


Review

For citations:


Docshin P.M., Bairqdar A., Malashicheva A.B. Current status, challenges and perspectives of mesenchymal stem cell-based therapy for cardiac regeneration. Complex Issues of Cardiovascular Diseases. 2021;10(3):72-78. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-72-78

Views: 914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)