Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Potential mechanisms underlying cardiovascular protection by sodium glucose cotransporter 2 inhibitors (empagliflozin)

https://doi.org/10.17802/2306-1278-2021-10-3-79-89

Abstract

The presented literature review is devoted to the cardioprotective capabilities of a new class of antihyperglycemic drugs - sodium-glucose cotransporter 2 inhibitors (SGLT2), which improve glycemic control through an insulin-independent mechanism of action associated with an increase in urinary glucose excretion. The article presents the results of large-scale clinical trials on the use of SGLT2 inhibitors in patients with and without diabetes, and with cardiovascular diseases or multiple cardiovascular risk factors. A number of the most frequently discussed cardiac specific mechanisms mediated by the SGLT2 inhibitor affecting the Abstract           state of the cardiovascular system are presented. Moreover, the article presents the results of a placebo-controlled clinical trial entitled “Empagliflozin reduces mortality in patients with type 2 diabetes at high cardiovascular risk” (EMPA-REG oUtcOmE) to analyze the cardioprotective capabilities of SGLT2 inhibitor empagliflozin in patients with type 2 diabetes and concomitant cardiovascular diseases. The article emphasizes the importance of further research to determine the degree of contribution of the above-mentioned mechanisms to the cardioprotective potential of SGLT2 inhibitors. PubMed database was used to identify relevant studies and systematic reviews.

About the Authors

I. S. Sabirov
Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin
Kyrgyzstan

Sabirov Ibragim S., PhD, Professor, Head of the Department of Therapy No.2, Medical Faculty.

44, Kiev St., Bishkek720000


Competing Interests:

И.С. Сабиров заявляет об отсутствии конфликта интересов



I. T. Murkamilov
Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin; I.K. Akhunbaev Kyrgyz State Medical Academy
Kyrgyzstan

Murkamilov Ilkhom T., PhD, Senior Lecturer, Department of Therapy No.2, Medical Faculty, State Educational Institution of Higher Professional Education Kyrgyz RSU named after the First President of Russia B.N. Yeltsin; Acting Associate Professor, Department of Faculty Therapy, I.K. Akhunbaev Kyrgyz S MA.

44, Kiev St., Bishkek720000; 92, Akhunbaev St., Bishkek, 720020


Competing Interests:

И.Т. Муркамилов заявляет об отсутствии конфликта интересов



V. V. Fomin
Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Fomin Viktor V., Corresponding Member of the Russian Academy of Sciences, PhD, Professor, Vice Chancellor for Clinical and Vocational Education Programmes, Head of the Department of Faculty Therapy No.1, Institute of Clinical Medicine named after N.V. Sklifosovsky, I. M. Sechenov First Moscow SMU.

2, Bolshaya Pirogovskaya St., Moscow, 119991


Competing Interests:

В.В. Фомин заявляет об отсутствии конфликта интересов



References

1. International Diabetes Federation. IDF Diabetes Atlas, 8th ed. Brussels, Belgium: International Diabetes Federation; 2017.

2. Saeedi P, Petersohn I., Salpea P, Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., Shaw J.E., Bright D., Williams R.; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. DOI: 10.1016/j.diabres.2019.107843

3. Standl E., Khunti K., Hansen T., Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol. 2019;26(2):7-14. DOI: 10.1177/2047487319881021

4. Sharma A., Green J., Dunning A., Lokhnygina Y., Al-Khatib S.M., Lopes R.D., Buse J.B., Lachin J.M., Van de Werf F., Armstrong P.W., Kaufman K.D., Standl E., Chan J.C.N., Distiller L. A., Scott R., Peterson E.D., Holman R.R.; TECOS Study Group. Causes of Death in a Contemporary Cohort of Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: Insights From the TECOS Trial. Diabetes Care. 2017;40(12):1763-1770. DOI: 10.2337/dc17-1091

5. Mozaffarian D., Benjamin E., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Despres J.P, Fullerton H.J., Howard VJ. et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the american heart association. Circulation. 2016;133:447-54. DOI: 10.1161/CIR.0000000000000366

6. Murkamilov I.T., Sabirov I.S., Fomin V.V., Murkamilova Zh.A., Yusupov F.A., Rayimzhanov Z.R. Modern methods of slowing down the progression of chronic kidney disease in type II diabetes mellitus. The Bulletin of Contemporary Clinical Medicine. 2020; 13 (4): 7685. DOI: 10.20969/ VSKM.2020.13(4).7685.(In Russian)

7. Salukhov V.V., Demidova T.Yu. Empagliflozin as a new management strategy on outcomes in patients with type 2 diabetes mellitus. Diabetes mellitus. 2016;19(6):494-510. https://doi.org/10.14341/DM8216 (In Russian)

8. Vrhovac I., Balen Eror D., Klessen D., Burger C., Breljak D., Kraus O., Radovic N., Jadrijevic S., Aleksic I., Walles T., Sauvant C. , Sabolic I., Koepsell H. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 2015;467(9):1881-98. DOI: 10.1007/s00424-014-1619-7

9. Ryden L., Standl E., Bartnik M., Van den Berghe G., Betteridge J., de Boer M.J., Cosentino F., Jonsson B., Laakso M. , Malmberg K., Priori S., Ostergren J., Tuomilehto J., Thrainsdottir I. et al. Guidelines on diabetes, prediabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J. 2007;28(1):88-136. DOI: 10.1093/eurheartj/ehl260

10. Tancredi M., Rosengren A., Svensson A.M., Kosiborod M., Pivodic A., Gudbjornsdottir S., Wedel H., Clements M., Dahlqvist S., Lind M. Excess Mortality among Persons with Type 2 Diabetes. N Engl J Med. 2015;373(18):1720-1732. DOI: 10.1056/NEJMoa1504347

11. Cosentino F., Grant PJ., Aboyans V, Bailey C.J., Ceriello A., Delgado V., Federici M., Filippatos G, Grobbee D. E., Hansen T.B., Huikuri H.V., Johansson I., Juni P, Lettino M., Marx N., Mellbin L.G., Ostgren C.J., Rocca B., Roffi M., Sattar N., Seferovic P.M., Sousa-Uva M., Valensi P, Wheeler D.C.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323. DOI: 10.1093/eurheartj/ehz486

12. Aitbaev K.A., Murkamilov I.T., Fomin V.V. nhibition of HIF-prolyl 4-hydroxylases as a promising approach to the therapy of cardiometabolic diseases. Terapevticheskii arkhiv. 2018;90(8):86-94. DOI:10.26442/terarkh201890886-94 (In Russian)

13. Ferrannini E., Muscelli E., Frascerra S., Baldi S., Mari A., Heise T., Broedl U.C., Woerle H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499-508. doi: 10.1172/JCI72227.

14. Lotfy M., Adeghate J., Kalasz H., Singh J., Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diab Rev. 2017;13:3-10. DOI: 10.2174/1573399812666151016101622

15. Huynh K., Bernardo B., McMullen J., Ritchie R. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375-415. DOI: 10.1016/j.pharmthera.2014.01.003

16. Schilling J., Mann D. Diabetic cardiomyopathy: bench to bedside. Heart Fail Clin. 2012;8(4):619-31. DOI: 10.1016/j.hfc.2012.06.007

17. Tate M., Grieve D.J., Ritchie R.H. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci (Lond). 2017 ;131(10):897-915. DOI: 10.1042/CS20160491

18. Zinman B., Wanner C., Lachin J., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., Broedl U.C., Inzucchi S.E.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-28. DOI: 10.1056/NEJMoa1504720

19. Packer M., Anker S., Butler J., Filippatos G., Pocock S.J., Carson P, Januzzi J., Verma S., Tsutsui H., Brueckmann M., Jamal W., Kimura K., Schnee J., Zeller C., Cotton D. et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-1424. DOI: 10.1056/NEJMoa2022190

20. Fitchett D., Inzucchi S., Cannon C., McGuire D.K., Scirica B.M., Johansen O.E., Sambevski S., Kaspers S., Pfarr E., George J.T., Zinman B. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation. 2019;139(11):1384-1395. DOI: 10.1161/CIRCULATIONAHA.118.037778

21. Packer M., Butler J., Filippatos G., Jamal W, Salsali A., Schnee J., Kimura K., Zeller C., George J., Brueckmann M., Anker S.D., Zannad F.; EMPEROR-Reduced Trial Committees and Investigators.Evaluation of the effect of sodium-glucose cotransporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail. 2019;21(10):1270-1278. DOI: 10.1002/ejhf.1536

22. Furtado R., Bonaca M., Raz I., Zelniker T.A., Mosenzon O., Cahn A., Kuder J., Murphy S.A., Bhatt D.L., Leiter L.A., McGuire D.K., Wilding J.P.H., Ruff C.T., Nicolau J.C., Gause-Nilsson I.A.M., Fredriksson M., Langkilde A.M., Sabatine M.S., Wiviott S.D. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation. 2019;139(22):2516-2527. DOI: 10.1161/CIRCULATIONAHA.119.039996

23. Zelniker T., Wiviott S., Raz I., Im K., Goodrich E.L., Bonaca M.P, Mosenzon O., Kato E.T., Cahn A., Furtado R.H.M., Bhatt D.L., Leiter L.A., McGuire D.K., Wilding J.PH., Sabatine M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31-39. DOI: 10.1016/S0140-6736(18)32590-X

24. Wilcox C.S. Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors. Hypertension. 2020;75(4):894-901. DOI:10.1161/ hypertensionaha.119.11684.

25. Heersprink L.H.J., de Zeeuw D., Wie L., Leslie B., List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 2013;15(9):853-62. DOI:10.1111/dom.12127.

26. Silva Dos Santos D., Polidoro J.Z., Borges-JUnior F.A., Girardi A.C.C. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective. Am J Physiol Cell Physiol. 2020;318(2):328-36. DOI:10.1152/ajpcell.00275.2019.

27. McMurray J., Solomon S., Inzucchi S., K0ber L., Kosiborod M.N., Martinez F.A., Ponikowski P., Sabatine M.S., Anand I.S., Belohlavek J. et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008. DOI: 10.1056/NEJMoa1911303

28. Sano M. Hemodynamic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J Clin Med Res. 2017;9(6):457-460. DOI: 10.14740/jocmr3011w

29. Sano M., Chen S., Imazeki H., Ochiai H., Seino Y Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo controlled, double-blind clinical trials. J. Diabetes Investig. 2018;9 (3):638-641. DOI: 10.im/jdi.12726

30. Nakayama H., Ohtsuka Y., Kawahara M. Changes in body composition during SGLT2 inhibitor treatment and their relevance to the improvement of insulin sensitivity. Diabetes Res Clin Pract. 2016;120:S50-1.

31. Iemitsu K., Iizuka T., Takihata M., Takai M., Nakajima S. , Minami N., Umezawa S., Kanamori A., Takeda H., Kawata T. , Ito S., Kikuchi T., Amemiya H., Kaneshiro M., Mokubo A., Takuma T., Machimura H., Tanaka K., Asakura T., Kubota A., Aoyagi S., Hoshino K., Ishikawa M., Obana M., Sasai N., Kaneshige H., Miyakawa M., Tanaka Y, Terauchi Y., Matsuba I. Factors influencing changes in hemoglobin A1c and body weight during treatment of type 2 diabetes with ipragliflozin: interim analysis of the ASSIGN-K study. J Clin Med Res 2016;8:373-8.DOI:10.14740/jocmr2492w

32. Pinto L., Rados D., Remonti L., Caroline Kaercher Kramer,1 Cristiane Bauermann Leitao,1 and Jorge Luiz Grossl Efficacy of SGLT2 inhibitors in glycemic control, weight loss and blood pressure reduction: a systematic review and metaanalysis. Diabetology & metabolic syndrome, 2015;7(S1): A58 doi:10.1186/1758-5996-7-S1-A58

33. Ramhez-Rodriguez A., Gonzalez-Ortiz M., Martmez-Abundis E. Effect of dapagliflozin on insulin secretion and insulin sensitivity in patients with prediabetes. Exp Clin Endocrinol Diabetes 2020;128:506-511.DOI:10.1055/a-0664-7583

34. McDowell K., Petrie M., Raihan N., Logue J. Effects of intentional weight loss in patients with obesity and heart failure: a systematic review. Obes Rev 2018;19:1189-204. DOI:10.im/obr. 12707

35. Rajasekeran H., Lytvyn Y, Cherney D. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016;89(3):524-6. DOI: 10.1016/j.kint.2015.12.038

36. Salukhov VV., Kotova M.E. Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2019; 8 (3): 61-74. doi: 10.24411/2304-9529-2019-13007 (in Russian)

37. Tikkanen I., Narko K., Zeller C., Green A., Salsali A., Broedl U.C., Woerle H.J.; EMPA-REG BP Investigators. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420-8. DOI: 10.2337/dc14-1096

38. Cherney D., Perkins B., Soleymanlou N., Har R., Fagan N., Johansen O.E., Woerle H.J., von Eynatten M., Broedl U.C. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28. DOI: 10.1186/1475-2840-13-28

39. Pfeifer M., Townsend R., Davies M., Vijapurkar U., Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol 2017;16:29. DOI:10.1186/s12933-017-0511-0

40. Mazidi M., Rezaie P., Gao H., Kengne A. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. Journal of the American Heart Association, 2017;6(6):e004007. DOI:10.1161/JAHA.116.004007

41. Hamouda N.N., Sydorenko V, Qureshi M.A., Alkaabi J.M., Oz M., Howarth F.C. Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 2014; 400:57-68. DOI:: 10.1007/s11010-014-2262-5

42. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J. Cardiol. 2018;71:471-476. DOI: 10.1016/jjjcc.2017.12.004

43. Swedberg K., Young, J., Anand I., Cheng S., Desai A.S., Diaz R., Maggioni A.P., McMurray J.J., O'Connor C., Pfeffer M.A., Solomon S.D., Sun Y, Tendera M., van Veldhuisen D.J.; RED-HF Committees; RED-HF Investigators. Treatment of anemia with darbepoetin alfa in systolic heart failure. New England Journal of Medicine. 2013;368(13):1210-1219. DOI:10.1056/NEJMoa1214865

44. Verma S., Rawat S., Ho K. Empagliflozin increases cardiac energy production in diabetes. JACC Basic Transl Sci. 2018;;3(5):575-587. DOI: 10.1016/j.jacbts.2018.07.006

45. Maiuri, M., Zalckvar, E., Kimchi, A., Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741-752. DOI:10.1038/nrm2239

46. Ghantous C., Azrak Z., Hanache S., Abou-Kheir W., Zeidan A. Differential role of leptin and adiponectin in cardiovascular system. Int J Endocrinol. 2015:1-13. DOI:10.1155/2015/534320

47. Iacobellis G., Ribaudo M., Zappaterreno A., Iannucci CV, Leonetti F. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol. 2004;94:1084-7. DOI:10.1016/j.amjcard.2004.06.075

48. Schulze P., Kratzsch J., Linke A., Schoene N., Adams V., Gielen S., Erbs S., Moebius-Winkler S., Schuler G. Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. Eur J Heart Fail. 2003;5:33-40. DOI:10.1016/s1388-9842(02)00177-0

49. Wu P., Wen W., Li J., Xu J, Zhao M., Chen H., Sun J. Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res. 2019;51:487-94. DOI:10.1055/a-0958-2441

50. Barbarash O.L., Garganeeva A.A., Gogolashvili N.G., Efremushkina A.A., Zharskiy S.L., Kashtalap VV, Korennova O.Yu., Makarov S.A., Nevzorova V.A., Protasov K.V., Ustyugov S.A., Shabelnikova O.Yu. The resolution on empagliflozin and heart failure has been adopted by the experts of the Siberian Federal District based on the results of the EMPEROR-Reduced study. Complex Issues of Cardiovascular Diseases. 2021;10(1):103-108. (In Russian) DOI: 10.17802/2306-1278-2021-1—1-103-108


Review

For citations:


Sabirov I.S., Murkamilov I.T., Fomin V.V. Potential mechanisms underlying cardiovascular protection by sodium glucose cotransporter 2 inhibitors (empagliflozin). Complex Issues of Cardiovascular Diseases. 2021;10(3):79-89. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-79-89

Views: 703


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)