Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Antimicrobial vascular grafts: experimental development and implementation in clinical practice

https://doi.org/10.17802/2306-1278-2021-10-3-90-102

Abstract

Prosthetic vascular graft infections, followed by severe complications and high mortality rates, remain one of the main issues in cardiovascular surgery. Therefore, the development of antimicrobial coating for vascular prostheses that is capable of preventing the infection is a very relevant field. This review outlines the main factors of development of antibiotic-resistant bacteria, the main directions in the development of vascular prostheses with an antimicrobial coating, and the prospects for the application of antimicrobial peptides and cationic amphiphiles as antimicrobial coating to develop an infection-resistant vascular prosthesis.

About the Authors

E. O. Krivkina
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Krivkina Evgeniya O., Junior Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Е.О. Кривкина заявляет об отсутствии конфликта интересов



V. G. Мatveeva
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Matveeva Vera G., Ph.D., Senior Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

В.Г. Матвеева заявляет об отсутствии конфликта интересов



L. V. Antonova
Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Antonova Larisa V., Ph.D., Head of the Laboratory of Cell Technologies, Department of Experimental Medicine.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Л.В. Антонова заявляет об отсутствии конфликта интересов



References

1. Pelletier-Galarneau M., Juneau D. Vascular graft infection: Improving diagnosis with functional imaging. J. Nucl. Cardiol. 2020: 1-5. DOI: 10.1007/s12350-020-02269-z.

2. Phang D., Smeds M.R., Abate M., Ali A., Long B., Rahimi M., Giglia J., Bath J. Revascularization with Obturator or Hemi-neoaortoiliac System for Partial Aortic Graft Infections. Ann Vasc Surg. 2019; 54: 166-175 DOI: 10.1016/j.avsg.2018.06.012.

3. Gentili A., Di Pumpo M., La Milia D.I., Vallone D., Vangi G., Corbo M.I., Berloco F., Cambieri A., Damiani G., Ricciardi W., Laurenti P. A Six-Year Point Prevalence Survey of Healthcare-Associated Infections in an Italian Teaching Acute Care Hospital. Int J Environ Res Public Health. 2020; 17(21): 7724. DOI: 10.3390/ijerph17217724.

4. Ulloa E.R., Singh K.V., Geriak M., Haddad F., Murray B.E., Nizet V, Sakoulas G. Cefazolin and Ertapenem Salvage Therapy Rapidly Clears Persistent Methicillin-Susceptible Staphylococcus aureus Bacteremia. Clin Infect Dis. 2020; 71(6): 1413-1418. DOI: 10.1093/cid/ciz995.

5. Siracuse J.J, Nandivada P., Giles K.A., Hamdan AD, Wyers MC, Chaikof EL, Pomposelli FB, Schermerhorn ML. Prosthetic graft infections involving the femoral artery. J Vasc Surg. 2013; 57(3):700-705. DOI: 10.1016/j.jvs.2012.09.049.

6. Andercou O., Marian D., Olteanu G., Stancu B., Cucuruz B., Noppeney T. Complex treatment of vascular prostheses infections. Medicine (Baltimore). 2018; 97(27): e11350. DOI: 10.1097/MD.0000000000011350.

7. Livermore D.M. Has the era of untreatable infections arrived? J Antimicrob Chemother. 2009; 64: 29-36. DOI: 10.1093/jac/dkp255.

8. Menger M.D., Hammersen F., Messmer K. In vivo assessment of neovascularization and incorporation of prosthetic vascular biografts. Thorac Cardiovasc Surg. 1992; 40(1): 19-25. DOI: 10.1055/s-2007-1020105.

9. Mourino V., Cattalini J.P., Boccaccini A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012; 9(68): 401-419. DOI: 10.1098/rsif.2011.0611.

10. Berard X., Puges M., Pinaquy J.B., Cazanave C., Stecken L. , Bordenave L., Pereyre S., M'Zali F. In vitro Evidence of Improved Antimicrobial Efficacy of Silver and Triclosan Containing Vascular Grafts Compared with Rifampicin Soaked Grafts. Eur J Vasc Endovasc Surg. 2019; 57(3):424-432. DOI: 10.1016/j.ejvs.2018.08.053.

11. Honig S., Seeger P., Rohde H., Kolbel T., Debus E.S., Diener H. Efficacy of antiseptic impregnation of aortic endografts with rifampicin compared to silver against in vitro contamination with four bacteria that frequently cause vascular graft infections. JVS: Vascular Science. 2O2O; 1: 181-189. DOI: 10.1016/j.jvssci.2020.06.003.

12. Larena-Avellaneda A., Russmann S., Fein M., Debus E.S. Prophylactic use of the silver-acetate-coated graft in arterial occlusive disease: a retrospective, comparative study. J Vasc Surg. 2009; 50(4):790-798. DOI: 10.1016/j.jvs.2009.05.003.

13. Jeanmonod P., Laschke M.W., Gola N., von Heesen M. , Glanemann M., Menger M.D., Moussavian M.R. Early host tissue response to different types of vascular prostheses coated with silver acetate or vaporized metallic silver. Eur J Vasc Endovasc Surg. 2014; 47(6): 680-688. DOI: 10.1016/j.ejvs.2014.03.006.

14. Butany J., Leask R.L., Desai N.D., Jegatheeswaran A., Silversides C., Scully H.E., Feindel C. Pathologic analysis of 19 heart valves with silver-coated sewing rings. J Card Surg. 2006; 21(6): 530-538. DOI: 10.1111/j.1540-8191.2006.00323.x.

15. Qiao M., Ying G.G., Singer A.C., Zhu Y.G. Review of antibiotic resistance in China and its environment. Environ Int. 2018; 110:160-172. DOI: 10.1016/j.envint.2017.10.016.

16. Schmacht D., Armstrong P., Johnson B., Pierre K., Back M., Honeyman A., Cuthbertson D., Bandyk D. Graft infectivity of rifampin and silver-bonded polyester grafts to MRSA contamination. Vasc Endovascular Surg. 2005; 39(5): 411- 420. DOI: 10.1177/153857440503900505.

17. Hernandez-Richter T., Schardey H.M., Wittmann F., Mayr S., Schmitt-Sody M., Blasenbreu S., Heiss M.M., Gabka C., Angele M.K. Rifampin and Triclosan but not silver is effective in preventing bacterial infection of vascular Dacron graft material. Eur J Vasc Endovasc Surg. 2003; 26(5): 550557. DOI: 10.1016/s1078-5884(03)00344-7.

18. Powell T.W., Burnham S.J., Johnson G.Jr. A passive system using rifampin to create an infection-resistant vascular prosthesis. Surgery. 1983; 94(5): 765-769.

19. Moussavian M.R., Laschke M.W., Schlachtenberger G., von Heesen M., Wagner M., Glanemann M., Menger M.D. Perigraft vascularization and incorporation of implanted Dacron prostheses are affected by rifampicin coating. J Vasc Surg. 2016; 64(6): 1815-1824. DOI: 10.1016/j.jvs.2015.07.104.

20. Goёau-Brissonпiёre O., Leport C., Bacourt F., Lebrault C., Comte R., Pechere J.C. Prevention of vascular graft infection by rifampin bonding to a gelatin-sealed Dacron graft. Ann Vasc Surg. 1991; 5(5): 408-412. DOI: 10.1007/BF02133043.

21. Gahtan V., Esses G.E., Bandyk D.F., Nelson R.T., Dupont E., Mills J.L. Antistaphylococcal activity of rifampin-bonded gelatin-impregnated Dacron grafts. J Surg Res. 1995; 58(1): 105-10. DOI: 10.1006/jsre.1995.1017.

22. Avramovic J., Fletcher J.P. Prevention of prosthetic vascular graft infection by rifampicin impregnation of a protein-sealed Dacron graft

23. Koshiko S., Sasajima T., Muraki S., Azuma N., Yamazaki K., Chiba K., Tachibana M., Inaba M. Limitations in the use of rifampicin-gelatin grafts against virulent organisms. J Vasc Surg. 2002; 35(4): 779-785. DOI: 10.1067/mva.2002.121850.

24. Clemens M.S., Stull M.C., Hata K.W., Heafner T.A., Watson J.D.B, Arthurs Z.M., Propper B.W. Antimicrobial-bonded graft patency in the setting of a polymicrobial infection in swine (Sus scrofa). J Vasc Surg. 2017; 66(4): 1210-1216. DOI: 10.1016/j.jvs.2016.09.040.

25. Javerliat I., Goёau-Brissonmёre O., Sivadon-Tardy V., Coggia M., Gaillard J.L. Prevention of Staphylococcus aureus graft infection by a new gelatin-sealed vascular graft prebonded E.O. Krivkina et al. 101 with antibiotics. J Vasc Surg. 2007; 46(5): 1026-1031. DOI: 10.1016/j.jvs.2007.06.023.

26. Sardelic F., Ao P. Y., Fletcher J.P. Rifampicin impregnated Dacron grafts: no development of rifampicin resistance in an animal model. Eur J Vasc Endovasc Surg. 1995; 9(3): 314-318. DOI: 10.1016/s1078-5884(05)80137-6.

27. Sacar M., Goksin I., Baltalarli A., Turgut H., Sacar S., Onem G., Ozcan V., Adali F. The prophylactic efficacy of rifampicin-soaked graft in combination with systemic vancomycin in the prevention of prosthetic vascular graft infection: an experimental study. J Surg Res. 2005; 129(2): 329-334. DOI: 10.1016/j.jss.2005.05.017.

28. Bisdas T., Beckmann E., Marsch G., Burgwitz K., Wilhelmi M., Kuehn C., Haverich A., Teebken O.E. Prevention of vascular graft infections with antibiotic graft impregnation prior to implantation: in vitro comparison between daptomycin, rifampin and nebacetin. Eur J Vasc Endovasc Surg. 2012; 43(4): 448-456. DOI: 10.1016/j.ejvs.2011.12.029.

29. Haverich A., Hirt S., Karck M., Siclari F., Wahlig H. Prevention of graft infection by bonding of gentamycin to Dacron prostheses. J Vasc Surg. 1992; 15(1): 187-193. DOI: 10.1067/mva.1992.30301.

30. Salmoukas C, Ruemke S, Rubalskii E, Burgwitz K, Haverich A, Kuehn C. Vascular Graft Pre-Treatment with Daptomycin Prior to Implantation Prevents Graft Infection with Staphylococcus aureus in an In Vivo Model. Surg Infect (Larchmt). 2020; 21(2): 161-168. DOI:10.1089/sur.2019.124.

31. Lehnhardt F.J., Torsello G., Claeys L.G., Pfeiffer M., Wachol-Drewek Z., Grundmann R.T., Sandmann W. Systemic and local antibiotic prophylaxis in the prevention of prosthetic vascular graft infection: an experimental study. Eur J Vasc Endovasc Surg. 2002; 23(2): 127-33. DOI: 10.1053/ejvs.2001.1571.

32. Manouguian S. Clinical experience with a new antimicrobially coated InterGard-IgK/AM vascular prosthesis in surgical treatment of deep wound infection with involvement of the synthetic bypass: report of 2 cases. Zentralblatt fur Chirurgie. 1996; 121(9): 768-772; discussion 772-773.

33. Hernandez-Richter T., Schardey H.M., Lohlein F., Fleischer C.T., Walli A.K., Boos K.S., Schildberg F.W. Binding kinetics of triclosan (Irgasan) to alloplastic vascular grafts: an in vitro study. Annals of Vascular Surgery. 2000; 14(4): 370-375. DOI: 10.1007/s100169910065.

34. Schneider F., O'Connor S., Becquemin J.P Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model. Ann Vasc Surg. 2008; 22(6): 815-821. DOI: 10.1016/j.avsg.2008.06.011.

35. Berard X, Stecken L, Pinaquy JB, Cazanave C, Puges M, Pereyre S, Bordenave L, M'Zali F. Comparison of the Antimicrobial Properties of Silver Impregnated Vascular Grafts with and without Triclosan. Eur J Vasc Endovasc Surg. 2016; 51(2): 285-92. DOI: 10.1016/j.ejvs.2015.10.016.

36. Avkhutskaya G.S., Senchik I.Yu., Kravtsova I.A., Mikhailova T.S., Kuznetsova O.G., Frolova O.S. Investigation of the properties of lavsan blood vessel prostheses treated with an antimicrobial composition with the introduction of metronidazole. Scientific notes of SPbGMU im. I.P Pavlova. 2008; 4. (In Russian)

37. Aboshady I., Raad I., Shah A.S., Vela D., Dvorak T., Safi H.J., Buja L.M., Khalil K.G. A pilot study of a triple antimicrobial-bonded Dacron graft for the prevention of aortic graft infection. J Vasc Surg. 2012; 56(3): 794-801. DOI: 10.1016/j.jvs.2012.02.008.

38. Aboshady I., Raad I., Vela D., Hassan M., Aboshady Y, Safi H.J., Buja L.M., Khalil K.G. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J Vasc Surg. 2016; 64(6): 1805-1814. DOI: 10.1016/j.jvs.2015.09.061.

39. Yu D.G., Zhu L.M., White K., Branford-White C. Electrospun nanofiber-based drug delivery systems. Health. 2009; 1(02): 67. DOI: 10.4236/health.2009.12012.

40. Yu D.G., Zhou J., Chatterton N.P, Li Y, Huang J., Wang X. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int J Nanomedicine. 2012; 7: 5725-5732. DOI: 10.2147/IJN. S37455.

41. Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B., Hadjiargyrou M. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release. 2004; 98(1): 47-56. DOI: 10.1016/j.jconrel.2004.04.009.

42. Liu K.S., Lee C.H., Wang Y.C., Liu S.J. Sustained release of vancomycin from novel biodegradable nanofiber-loaded vascular prosthetic grafts: in vitro and in vivo study. Int J Nanomedicine. 2015; 10: 885-891. DOI: 10.2147/IJN.S78675.

43. Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta. 2009; 1788(8): 1687-92. D0I:10.1016/j.bbamem.2008.09.013.

44. Ikeda T., Tazuke S. Biologically active polycations: Antimicrobial activities of Poly[trialkyl(vinylbenzyl) ammonium chloride]-type polycations . Die Makromol. Chem. Rapid Commun. 1983; (4): 459-461.

45. Gelman M.A., Weisblum B., Lynn D.M., Gellman S.H. Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett. 2004; 6(4): 557-60. DOI: 10.1021/ol036341+.

46. Vigliotta G., Mella M., Rega D., Izzo L. Modulating antimicrobial activity by synthesis: dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules. 2012; 13(3): 833-41. DOI: 10.1021/bm2017349.

47. Haney E.F., Mansour S.C., Hancock R.E. Antimicrobial Peptides: An Introduction. Methods Mol Biol. 2017; 1548: 3-22. DOI: 10.1007/978-1-4939-6737-7_1. PMID: 28013493.

48. Fan L., Sun J., Zhou M., Zhou J., Lao X., Zheng H., Xu H. DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep. 2016; 6: 24482. DOI: 10.1038/srep24482.

49. Kang X., Dong F., Shi C., Liu S., Sun J., Chen J., Li H., Xu H., Lao X., Zheng H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data. 2019; 6(1): 148. DOI: 10.1038/s41597-019-0154-y.

50. Ciumac D., Gong H., Hu X., Lu J.R. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 2019; 537: 163-185. DOI: 10.1016/j.jcis.2018.10.103..

51. Scocchi M., Mardirossian M., Runti G., Benincasa M. Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria. Curr Top Med Chem. 2016; 16(1): 76-88. DOI: 10.2174/1568026615666150703121009.

52. Le C.F., Fang C.M., Sekaran S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017; 61(4): e02340-16. DOI: 10.1128/AAC.02340-16.

53. Andersson D.I., Hughes D., Kubicek-Sutherland J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016; 26: 43-57. DOI: 10.1016/j.drup.2016.04.002.

54. Molchanova N., Hansen P.R., Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules. 2017; 22(9): 1430. DOI: 10.3390/molecules22091430.

55. Xue Y, Xiao H., Zhang Y Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci. 2015; 16(2): 3626-3655. DOI: 10.3390/ijms16023626.


Review

For citations:


Krivkina E.O., Мatveeva V.G., Antonova L.V. Antimicrobial vascular grafts: experimental development and implementation in clinical practice. Complex Issues of Cardiovascular Diseases. 2021;10(3):90-102. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-90-102

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)