Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

State-of-the-art technology for cardiovascular research

https://doi.org/10.17802/2306-1278-2021-10-3-103-108

Полный текст:

Аннотация

Heart and vascular diseases are responsible for tens of millions of deaths annually, underscoring an urgent need to improve the existing clinical practice in order to benefit patients. Advancement of basic science and technology enables understanding of disease etiology and pathogenesis at a deeper level of complexity. This mini-review article provides a summary of recent methods of cell and molecular biology applicable for current cardiovascular research. Widespread application of these approaches in cardiovascular disease research will be a key factor in the prolonged longevity and life expectancy of the general population.

Об авторе

А. E. Yuzhalin
The University of Texas MD Anderson Cancer Center
Соединённые Штаты Америки

Arseniy E. Yuzhalin, PhD, Odyssey Fellow, Department of Molecular and Cellular Oncology.

1515 Holcombe Boulevard, Unit 1051, Houston, Texas 77030


Конфликт интересов:

Yuzhalin declares no conflict of interest related to this article



Список литературы

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121433/

2. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014 Oct;25(5):387-93.

3. Elguindy A, Yacoub MH. The discovery of PCSK9 inhibitors: A tale of creativity and multifaceted translational research. Glob Cardiol Sci Pract. 2013 Dec 30;2013(4):343-7.

4. Coons AH, Creech HJ, Jones RN. Immunological Properties of an Antibody Containing a Fluorescent Group. Proc Soc Exp Biol Med. 1941 Jun 1;47(2):200-2.

5. Rimm DL. What brown cannot do for you. Nat Biotechnol. 2006 Aug;24(8):914-6.

6. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014 Apr;11(4):417-22.

7. Yajima Y , Hiratsuka T, Kakimoto Y, Ogawa S, Shima K, Yamazaki Y, Yoshikawa K, Tamaki K, Tsuruyama T. Region of Interest analysis using mass spectrometry imaging of mitochondrial and sarcomeric proteins in acute cardiac infarction tissue. Sci Rep. 2018 10;8(1):7493.

8. Mourino-Alvarez L, Iloro I, de la Cuesta F, Azkargorta M, Sastre-Oliva T, Escobes I, Lopez-Almodovar LF, Sanchez PL, Urreta H, Fernandez-Aviles F, Pinto A, Padial LR, Akerstrom F, Elortza F, Barderas MG. MALDI-Imaging Mass Spectrometry: a step forward in the anatomopathological characterization of stenotic aortic valve tissue. Sci Rep. 2016;6:27106.

9. Sugiura Y, Katsumata Y, Sano M, Honda K, Kajimura M, Fukuda K, Suematsu M. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci Rep. 2016;6:32361.

10. Khalid N, Ahmad SA, Shlofmitz E, Chhabra L. Pathophysiology of Takotsubo Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 [cited 2021 Apr 12].

11. Bailliard F, Anderson RH. Tetralogy of Fallot. Orphanet J Rare Dis. 2009;13;4:2.

12. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009 Jan;10(1):57-63.

13. Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016 Apr 21;165(3):535-50.

14. Shyu A-B, Wilkinson MF, van Hoof A. Messenger RNA regulation: to translate or to degrade. EMBO J. 2008 Feb 6;27(3):471-81.

15. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-Wide Analysis in vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science. 2009 Apr 10;324(5924):218-23.

16. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012 Jul 26;7(8):1534-50.

17. Njoroge W, Hernandez ACH, Musa FI, Butler R, Harper AGS, Yang Y. The Combination of Tissue-Engineered Blood Vessel Constructs and Parallel Flow Chamber Provides a Potential Alternative to In vivo Drug Testing Models. Pharmaceutics. 2021 Mar 5;13(3).

18. Shishkova D, Markova V, Sinitsky M, Tsepokina A, Velikanova E, Bogdanov L, Glushkova T, Kutikhin A. Calciprotein Particles Cause Endothelial Dysfunction under Flow. Int J Mol Sci. 2020;21(22):8802.

19. Ganguly A, Zhang H, Sharma R, Parsons S, Patel KD. Isolation of human umbilical vein endothelial cells and their use in the study of neutrophil transmigration under flow conditions. J Vis Exp JoVE. 2012 Aug 8;(66):e4032.

20. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002 Aug 16;297(5584):1183-6.

21. Jindal A, Gupta P, Jayadeva, Sengupta D. Discovery of rare cells from voluminous single cell expression data. Nat Commun. 2018 Nov 9;9(1):4719.

22. Van den Berge K, Roux de Bezieux H, Street K, Saelens W, Cannoodt R, Saeys Y, et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat Commun. 2020 Mar 5;11(1):1201.

23. Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020 Aug;17(8):457-73.

24. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007 Mar 23;315(5819):1709-12.

25. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

26. Chiu J-J, Chien S. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiol Rev. 2011;91(1):327-87.

27. Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands J-L, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol. 2021 May 5;41(5):1607-24.

28. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013 Dec;10(12):1213-8.

29. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol. 2019 Aug;37(8):916-24.

30. Aavik E, Lumivuori H, Leppanen O, Wirth T, Hakkinen S-K, Brasen J-H, et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J. 2015 Apr 21;36(16):993-1000.

31. Hocker JD, Poirion OB, Zhu F, Buchanan J, Zhang K, Chiou J, et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci Adv. 2021;7(20):eabf1444.


Рецензия

Для цитирования:


Yuzhalin А.E. State-of-the-art technology for cardiovascular research. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(3):103-108. https://doi.org/10.17802/2306-1278-2021-10-3-103-108

For citation:


Yuzhalin A.E. State-of-the-art technology for cardiovascular research. Complex Issues of Cardiovascular Diseases. 2021;10(3):103-108. https://doi.org/10.17802/2306-1278-2021-10-3-103-108

Просмотров: 175


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)