Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Overview of existing in vitro BBB models: advantages and disadvantages, current state and future prospects

https://doi.org/10.17802/2306-1278-2021-10-3-109-120

Abstract

There is growing research focusing on endothelial cells as separate units of the blood-brain barrier (BBB), and on the complex relationships between different types of cells within a neurovascular unit. To conduct this type of studies, researches use vastly different in vitro BBB models. The main objective of such models is to study the BBB permeability for different molecules, and to advance the current level of understanding the mechanisms of disease and to develop methods of targeted therapy for the central nervous system. The analysis of the existing Abstract in vitro BBB models and their advantages/disadvantages was conducted using the clinical trial data obtained in Russian/foreign countries. In this review, the authors highlight the most relevant assessment parameters and propose a unified classification of in vitro BBB models. According to the performed analysis, there is a tendency to move from 2D BBB models based on semipermeable inserts to 3D BBB spheroid and microfluidic organ-on-chip models. Moreover, the use of human induced pluripotent stem cells instead of animal primary cells will make it possible to reliably scale the results obtained in vitro to conditions in vivo.

About the Authors

A. I. Mosiagina
Federal State Budgetary Educational Institution of Higher Education Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Healthcare of the Russian Federation
Russian Federation

Mosiagina Angelina I., MD, PhD student at the Department of Biological Chemistry, Junior Researcher at the Research Institute of Molecular Medicine and Pathobiochemistry.

1, Partizana Zheleznyaka St., Krasnoyarsk, 660022


Competing Interests:

А.И. Мосягина заявляет об отсутствии конфликтов интересов



A. V. Morgun
Federal State Budgetary Educational Institution of Higher Education Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Healthcare of the Russian Federation
Russian Federation

Morgun Andrey V., MD, PhD, Associate Professor at the Department of Pediatrics, Institute of Postgraduate Education, Chair, Department of Pediatrics.

1, Partizana Zheleznyaka St., Krasnoyarsk, 660022


Competing Interests:

А.В. Моргун заявляет об отсутствии конфликтов интересов



A. B. Salmina
Federal State Budgetary Educational Institution of Higher Education Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Healthcare of the Russian Federation; Research Center of Neurology
Russian Federation

Salmina Alla B., MD, PhD, Professor, Leading Researcher at the Research Institute of Molecular Medicine and Pathobiochemistr, Krasnoyarsk State MU named after Professor V.F. Voino-Yasenetsky; Leading Researcher, Head of the Laboratory of Experimental Neurocytology, Department of Brain Research, Research Center of Neurology.

1, Partizana Zheleznyaka St., Krasnoyarsk, 660022; 80, Volokolamskoye Hwy, Moscow, 125367


Competing Interests:

А.Б. Салмина входит в редакционную коллегию журнала «Комплексные проблемы сердечно-сосудистых заболеваний»



References

1. Langen U.H., Ayloo S., Gu C. Development and Cell Biology of the Blood-Brain Barrier. Annu Rev Cell Dev Biol. 2019; 35: 591-613. doi:10.1146/annurev-cellbio-100617-062608

2. Mae M.A., He L., Nordling S., Vazquez-Liebanas E., Nahar K., Jung B., Li X., Tan B.C., Chin F. J., Cazenave-Gassiot A., Wenk M.R., Zarb Y., Lavina B., Quaggin S.E., Jeansson M., Gu C., Silver D.L., Vanlandewijck M., Butcher E.C., Keller A., Betsholtz C. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circ Res. 2021; 128 (4): e46-e62. doi:10.1161/CIRCRESAHA.120.317473

3. Heithoff B.P., George K.K., Phares A.N., Zuidhoek I.A., Munoz-Ballester C., Robel S. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia. 2021; 69 (2): 436-472. doi:10.1002/glia.23908

4. Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci. 2020; 21 (8): 416-432. doi:10.1038/s41583-020-0322-2

5. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96 (1): 17-42. doi:10.1016/j.neuron.2017.07.030

6. Sweeney M.D., Zhao Z., Montagne A., Nelson A.R., Zlokovic B.V Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev. 2019; 99 (1): 21-78. doi:10.1152/physrev.00050.2017

7. Villabona-Rueda A., Erice C., Pardo C.A., Stins M.F. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. Front Cell Neurosci. 2019: 405. doi:10.3389/fncel.2019.00405

8. Joo F., Karnushina I. A procedure for the isolation of capillaries from rat brain. Cytobios. 1973; 8 (29): 41-48

9. Bowman P.D., Ennis S.R., Rarey K.E., Betz A.L., Goldstein G.W. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol. 1983; 14 (4): 396-402. doi:10.1002/ana.410140403

10. Tao-Cheng J.H., Nagy Z., Brightman M.W. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987; 7 (10): 3293-3299. doi:10.1523/JNEUROSCI.07-10-03293.1987

11. Hatherell K., Couraud P.-O., Romero I.A., Weksler B., Pilkington G.J. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011; 199 (2): 223-229. doi:10.1016/j.jneumeth.2011.05.012

12. Liu Y, Gill E., Huang YY.S. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Futur Sci OA. 2017; 3 (2): FSO173. doi:10.4155/fsoa-2016-0084

13. van der Helm M.W., Odijk M., Frimat J.-P., van der Meer A.D., Eijkel J.C.T., van den Berg A., Segerink L.I. Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron. 2016; 85: 924-929. doi:10.1016/j.bios.2016.06.014

14. Srinivasan B., Kolli A.R. Transepithelial/Transendothelial Electrical Resistance (TEER) to Measure the Integrity of Blood-Brain Barrier. Humana Press, New York, NY: Springer New York; c2019. 99-114p. (Barichello T., editor. Blood-Brain Barrier. Neuromethods; vol 142). doi:10.1007/978-1-4939-8946-1_6

15. Hladky S.B., Barrand M.A. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS. 2018; 15 (1): 30. doi:10.1186/s12987-018-0113-6

16. Bayir E., Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells. 2021; 10 (6): 1400. doi:10.3390/cells10061400

17. Kadry H., Noorani B., Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020; 17 (1): 69. doi:10.1186/s12987-020-00230-3

18. Abdul Razzak R., Florence G.J., Gunn-Moore F.J. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci. 2019; 20 (12): 3108. doi:10.3390/ijms20123108

19. Crone C., Olesen S.P. Electrical resistance of brain microvascular endothelium. Brain Res. 1982; 241 (1): 49-55. doi:10.1016/0006-8993(82)91227-6

20. Siddharthan V., Kim Y. V, Liu S., Kim K.S. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007; 1147: 39-50. doi:10.1016/j.brainres.2007.02.029

21. Hartmann C., Zozulya A., Wegener J., Galla H.-J. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res. 2007; 313 (7): 1318-1325. doi:10.1016/j.yexcr.2007.01.024

22. Boytsova E.B., Morgun A.V., Osipova E.D., Martinova G.P., Salmina A.B. Change of reception and lactate transport by cerebral endothelium under the influence of viral and bacterial inflammation in vitro. Fundamental'naya i klinicheskaya meditsina - Fundamental and Clinical Medicine. 2020; 5 (1): 8-14. (In Russian). doi:10.23946/2500-0764-2020-5-1-8-14

23. Dehouck M.P., Meresse S., Delorme P., Fruchart J.C., Cecchelli R. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem. 1990; 54 (5): 1798-1801. doi:10.1111/j.1471-4159.1990.tb01236.x.

24. Cenini G., Hebisch M., Iefremova V, Flitsch L.J., Breitkreuz Y, Tanzi R.E., Kim D.Y., Peitz M., Brustle O. Dissecting Alzheimer’s disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci. 2021; 110: 103568. doi:10.1016/j.mcn.2020.103568

25. Morgun A.V., Kuvacheva N.V., Khilazheva Y.D., Taranushenko T.Y, Salmina A.B. The features of connexins expression in the cells of neurovasclar unit in normal conditions and hypoxia in vitro. Byulleten' sibirskoy meditsiny - Bulletin of Siberian Medicine. 2014; 13 (6): 5-9 (In Russian). doi:10.20538/1682-0363-2014-6-5-9

26. Modarres H.P., Janmaleki M., Novin M., Saliba J., El-Hajj F., RezayatiCharan M., Seyfoori A., Sadabadi H., Vandal M., Nguyen M.D., Hasan A., Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release. 2018; 273: 108130. doi:10.1016/j.jconrel.2018.01.024

27. Morgun A.V., Osipova E.D., Boytsova E.B., Shuvaev A.N., Komleva Yu.K., Trufanova L.V., Vais E.F., Salmina A. B. Astroglia-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Abeta1-42. Biomeditsinskaya Khimiya - Biomedical Chemistry. 2019; 65 (5): 366-373 (in Russian). doi:10.18097/PBMC20196505366

28. Urich E., Lazic S.E., Molnos J., Wells I., Freskgard P.-О. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One. 2012; 7 (5): e38149. doi:10.1371/journal.pone.0038149

29. Neuwelt E., Abbott N.J., Abrey L., Banks W.A., Blakley B. , Davis T., Engelhardt B., Grammas P, Nedergaard M., Nutt J., Pardridge W., Rosenberg G.A., Smith Q., Drewes L.R. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008; 7 (1): 84-96. doi:10.1016/S1474-4422(07)70326-5

30. Hakkarainen J.J., Jalkanen A.J., Kaariainen T.M., Keski-Rahkonen P, Venalainen T., Hokkanen J., Monkkonen J., Suhonen M., Forsberg M.M. Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm. 2010; 402 (1-2): 27-36. doi:10.1016/j.ijpharm.2010.09.016

31. Ehrmann R.L., Gey G.O. The Growth of Cells on a Transparent Gel of Reconstituted Rat-Tail Collagen2. JNCI J Natl Cancer Inst. 1956; 16 (6): 1375-1403. doi:10.1093/jnci/16.6.1375

32. Davis G.E., Koh W., Stratman A.N. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today. 2007; 81 (4): 270-285. doi:10.1002/bdrc.20107

33. Wang H., Yang H., Shi Y., Xiao Y., Yin Y, Jiang B., Ren H., Chen W., Xue Q., Xu X. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Brain Pathol. 2021; 31 (5): e12940. doi:10.1111/bpa.12940

34. Bhalerao A., Sivandzade F., Archie S.R., Chowdhury E.A., Noorani B., Cucullo L. In vitro modeling of the neurovascular unit : advances in the field. Fluids Barriers CNS. 2020; 1-20. doi:10.1186/s12987-020-00183-7

35. Urich E., Patsch C., Aigner S., Graf M., Iacone R., Freskgard P.O. Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep. 2013; 3: 1500. doi:10.1038/srep01500

36. Cho C., Wolfe J.M., Fadzen C.M., Calligaris D., Hornburg K., Chiocca E.A., Agar N.Y.R., Pentelute B.L., Lawler A.E. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 2017; 8: 1-14. doi:10.1038/ncomms15623.

37. Nzou G., Wicks R.T., Wicks E.E., Seale S.A., Sane C.H., Chen A., Murphy S.V, Jackson J.D., Atala A.J. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Sci Rep. 2018; 8 (1): 7413. doi:10.1038/s41598-018-25603-5

38. Sokolova V., Nzou G., Meer S.B. Van Der, Ruks T., Heggen M., Loza K., Hagemann N., Murke F., Giebel B., Hermann D.M., Atala A.J., Epple M. Acta Biomaterialia Ultrasmall gold nanoparticles (2 nm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomater. 2020; 111: 349-362. doi:10.1016/j.actbio.2020.04.023

39. Bergmann S., Lawler S.E., Qu Y, Fadzen C.M., Wolfe J.M., Regan M.S., Pentelute B.L., Agar N.Y.R., Cho C. -F. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc. 2018; 13 (12): 2827-2843. doi:10.1038/s41596-018-0066-x

40. Ando J., Yamamoto K. Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J. 2009; 73 (11): 1983-1992. doi:10.1253/circj.cj-09-0583

41. Rochfort K.D., Cummins P.M. In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. Humana Press, New York, NY: Springer New York; 2019. 71-98p. doi:10.1007/978-1-4939-8946-1_5

42. Jiang L., Li S., Zheng J., Li Y, Huang H. Recent Progress in Microfluidic Models of the Blood-Brain Barrier. Micromachines. 2019; 10 (6): 375. doi:10.3390/mi10060375

43. FrameM.D.,SareliusI.H.Asystemforcultureofendothelial cells in 20-50-microns branching tubes. Microcirculation. 1995; 2 (4): 377-385. doi:10.3109/10739689509148282.

44. Stanness K.A., Guatteo E., Janigro D. A dynamic model of the blood-brain barrier “in vitro”. Neurotoxicology. 1996; 17 (2): 481-496.

45. Huh D., Leslie D.C., Matthews B.D., Fraser J.P, Jurek S., Hamilton G.A., et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012; 4 (159): 159ra147. doi:10.1126/scitranslmed.3004249

46. Maoz B.M., Herland A., FitzGerald E.A., Grevesse T., Vidoudez C., Pacheco A.R., Sheehy S.P, Park T.-E., Dauth S., Mannix R., Budnik N., Shores K., Cho A., Nawroth J.C., Segre D. , Budnik B., Ingber D.E., Parker K.K. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018; 36 (9): 865-874. doi:10.1038/nbt.4226

47. Teixeira M.I., Amaral M.H., Costa PC., Lopes C.M., Lamprou D.A. Recent Developments in Microfluidic Technologies for Central Nervous System Targeted Studies. Pharmaceutics. 2020; 12 (6): 542. doi:10.3390/pharmaceutics12060542

48. Shityakov S., Forster C.Y. Computational simulation and modeling of the blood-brain barrier pathology. Histochem Cell Biol. 2018; 149 (5): 451-459. doi:10.1007/s00418-018-1665-x

49. Alqahtani S. In silico ADME-Tox modeling: progress and prospects. Expert Opin Drug Metab Toxicol. 2017;13 (11): 1147-1158. doi:10.1080/17425255.2017.1389897

50. Essayan-Perez S., Zhou B., Nabet A.M., Wernig M., Huang YA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis. 2019; 130: 104503. doi:10.1016/j.nbd.2019.104503


Review

For citations:


Mosiagina A.I., Morgun A.V., Salmina A.B. Overview of existing in vitro BBB models: advantages and disadvantages, current state and future prospects. Complex Issues of Cardiovascular Diseases. 2021;10(3):109-120. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-3-109-120

Views: 585


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)