ELECTRON MICROSCOPY SIGNS OF NORMAL AND DYSFUNCTIONAL RAT AORTIC ENDOTHELIUM
https://doi.org/10.17802/2306-1278-2024-13-4-13-191-203
Abstract
Highlights
- A fundamental distinguishing feature of normal endothelial cell morphotypes from pathological ones is their preserved orientation along the direction of blood flow in the absence of cytoplasmic or membrane defects.
- The main characteristics of dysfunctional endothelial cells include a spherical shape (indicating a loss of cellular orientation along the direction of blood flow), the presence of large vacuoles within the cell, cytoplasmic vacuolization, impaired plasma membrane integrity, reduced contrast between the nucleus and cytoplasm, and partial detachment of the endothelial cell from the basement membrane.
- The condition of organelles (mitochondria, Golgi complex, and endoplasmic reticulum) and impaired basement membrane integrity are not sensitive or specific markers of dysfunctional endothelium compared to the aforementioned features
Aim. To analyze the electron microscopic features of normal and dysfunctional endothelium using the descending aorta of rats (characterized by laminar blood flow).
Methods. The study was conducted on 5 male Wistar rats (age ≈ 6 months, body weight ≈ 500 g). The extracted aortas were chemically fixed in 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide solution with 1.5% potassium ferrocyanide, incubated with 1% thiocarbohydrazide, stained in 2% aqueous osmium tetroxide solution, contrasted in 1% phosphotungstic acid, stained with 2% gadolinium triacetate, dehydrated in ascending concentrations of ethanol, isopropanol, and acetone, embedded in a mixture of acetone and epoxy resin, and then in pure Araldite 502 epoxy resin, followed by its polymerization. After grinding and polishing, the aorta samples were contrasted with lead citrate, coated with carbon, and visualized using backscattered scanning electron microscopy.
Results. Electron microscopic analysis identified three main morphotypes of normal endothelial cells: 1) elongated shape along the direction of blood flow and an elongated nucleus; semicircular shape with an oval, round, kidney-shaped, or polymorphic nucleus with a less pronounced but clearly visible orientation along the direction of blood flow; 3) large nucleus with an even less pronounced but visible orientation along the direction of blood flow. The basement membrane of normal endothelial cells often contained various defects. Dysfunctional endothelium also exhibited several morphotypes, characterized by different combinations of the following features: spherical shape and loss of cell orientation along the direction of blood flow, presence of large vacuoles within the cell, cytoplasmic vacuolization, disruption of plasma membrane integrity, reduced contrast between the nucleus and cytoplasm, and partial detachment of the endothelial cell from the basement membrane. However, pronounced changes in the structure of organelles or the adjacent basement membrane were often not observed in dysfunctional endothelial cells.
Conclusion. The preservation of orientation along the direction of blood flow indicates a normal phenotype of endothelial cells in the absence of other signs of dysfunctional endothelium (vacuoles within the cytoplasm, cytoplasmic vacuolization, disruption of plasma membrane integrity, reduced contrast between the nucleus and cytoplasm, and partial detachment of the endothelial cell from the basement membrane).
Keywords
About the Authors
Vladislav A. KoshelevRussian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Leo A. Bogdanov
Russian Federation
PhD, Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Rinat A. Mukhamadiyarov
Russian Federation
PhD, Senior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia I. Lazebnaya
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Alexander D. Stepanov
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anton G. Kutikhin
Russian Federation
PhD, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Cahill P.A., Redmond E.M. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi: 10.1016/j.atherosclerosis.2016.03.007.
2. Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.
3. Gimbrone M.A.Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.
4. Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555-565. doi: 10.1038/s41569-018-0030-z.
5. Bonaventura A., Vecchié A., Dagna L., Martinod K., Dixon D.L., Van Tassell B.W., Dentali F., Montecucco F., Massberg S., Levi M., Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319-329. doi: 10.1038/s41577-021-00536-9.
6. Baaten C.C.F.M.J., Vondenhoff S., Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023;132(8):970-992. doi: 10.1161/CIRCRESAHA.123.321752.
7. Segers V.F.M., Bringmans T., De Keulenaer G.W. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023;325(2):H398-H413. doi: 10.1152/ajpheart.00256.2023.
8. Kozlov S., Okhota S., Avtaeva Y., Melnikov I., Matroze E., Gabbasov Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front Cardiovasc Med. 2022;9:1038030. doi: 10.3389/fcvm.2022.1038030.
9. Goncharov N.V., Popova P.I., Kudryavtsev I.V., Golovkin A.S., Savitskaya I.V., Avdonin P.P., Korf E.A., Voitenko N.G., Belinskaia D.A., Serebryakova M.K., Matveeva N.V., Gerlakh N.O., Anikievich N.E., Gubatenko M.A., Dobrylko I.A., Trulioff A.S., Aquino A.D., Jenkins R.O., Avdonin P.V. Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci. 2024;25(3):1888. doi: 10.3390/ijms25031888.
10. Alexander Y., Osto E., Schmidt-Trucksäss A., Shechter M., Trifunovic D., Duncker D.J., Aboyans V., Bäck M., Badimon L., Cosentino F., De Carlo M., Dorobantu M., Harrison D.G., Guzik T.J., Hoefer I., Morris P.D., Norata G.D., Suades R., Taddei S., Vilahur G., Waltenberger J., Weber C., Wilkinson F., Bochaton-Piallat M.L., Evans P.C. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res. 2021;117(1):29-42. doi: 10.1093/cvr/cvaa085.
11. Janaszak-Jasiecka A., Siekierzycka A., Płoska A., Dobrucki I.T., Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules. 2021;11(7):982. doi: 10.3390/biom11070982.
12. Dowsett L., Higgins E., Alanazi S., Alshuwayer N.A., Leiper F.C., Leiper J. ADMA: A Key Player in the Relationship between Vascular Dysfunction and Inflammation in Atherosclerosis. J Clin Med. 2020;9(9):3026. doi: 10.3390/jcm9093026.
13. Evans P.C., Rainger G.E., Mason J.C., Guzik T.J., Osto E., Stamataki Z., Neil D., Hoefer I.E., Fragiadaki M., Waltenberger J., Weber C., Bochaton-Piallat M.L., Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177-2184. doi: 10.1093/cvr/cvaa230.
14. Feenstra L., Kutikhin A.G., Shishkova D.K., Buikema H., Zeper L.W., Bourgonje A.R., Krenning G., Hillebrands J.L. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol. 2023;43(3):443-455. doi: 10.1161/ATVBAHA.122.318420.
15. Kostyunin A., Glushkova T., Velikanova E., Mukhamadiyarov R., Bogdanov L., Akentyeva T., Ovcharenko E., Evtushenko A., Shishkova D., Markova Y., Kutikhin A. Embedding and Backscattered Scanning Electron Microscopy (EM-BSEM) Is Preferential over Immunophenotyping in Relation to Bioprosthetic Heart Valves. Int J Mol Sci. 2023;24(17):13602. doi: 10.3390/ijms241713602.
16. Bogdanov L., Shishkova D., Mukhamadiyarov R., Velikanova E., Tsepokina A., Terekhov A., Koshelev V., Kanonykina A., Shabaev A., Frolov A., Zagorodnikov N., Kutikhin A. Excessive Adventitial and Perivascular Vascularisation Correlates with Vascular Inflammation and Intimal Hyperplasia. Int J Mol Sci. 2022;23(20):12156. doi: 10.3390/ijms232012156.
17. Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi: 10.3389/fcvm.2021.739549.
18. Trimm E., Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi: 10.1038/s41569-022-00770-1.
19. Ricard N., Bailly S., Guignabert C., Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol. 2021;18(8):565-580. doi: 10.1038/s41569-021-00517-4.
20. Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi: 10.1161/ATVBAHA.120.314346.
21. Tombor L.S., Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117(1):35. doi: 10.1007/s00395-022-00941-8.
22. McQueen A., Warboys C.M. Mechanosignalling pathways that regulate endothelial barrier function. Curr Opin Cell Biol. 2023;84:102213. doi: 10.1016/j.ceb.2023.102213.
23. Hamrangsekachaee M., Wen K., Bencherif S.A., Ebong E.E. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol. 2023;324(2):C488-C504. doi: 10.1152/ajpcell.00449.2022.
24. Wang X., Shen Y., Shang M., Liu X., Munn L.L. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res. 2023;119(8):1656-1675. doi: 10.1093/cvr/cvad076.
25. Bloom S.I., Islam M.T., Lesniewski L.A., Donato A.J. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38-51. doi: 10.1038/s41569-022-00739-0.
Supplementary files
Review
For citations:
Koshelev V.A., Bogdanov L.A., Mukhamadiyarov R.A., Lazebnaya A.I., Stepanov A.D., Kutikhin A.G. ELECTRON MICROSCOPY SIGNS OF NORMAL AND DYSFUNCTIONAL RAT AORTIC ENDOTHELIUM. Complex Issues of Cardiovascular Diseases. 2024;13(4):191-203. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4-13-191-203