Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Primer parameters defining efficiency and coefficient of determination in quantitative polymerase chain reaction

https://doi.org/10.17802/2306-1278-2020-9-3-13-20

Abstract

We performed a correlation analysis between primer parameters and qPCR efficiency/coefficient of determination in two independent samples from in vitro functional experiments.

Primer parameters do not define qPCR efficiency and coefficient of determination significantly if primers are designed according to the optimised PRIMER-BLAST settings.

Aim. To find the correlation between the primer parameters, efficiency, and coefficient of determination (R2 ) in quantitative polymerase chain reaction (qPCR) conditions.

Methods. Upon RNA isolation from primary human coronary artery endothelial cells, we performed reverse transcription-qPCR (RT-qPCR) utilising SYBR Green chemistry to measure the expression of the following genes: IL1B, IL6, CXCL8, IL12A, IL23A, PECAM1, VWF, KDR, FAPA, ACTA2, SMTN, VIM, COL4A1, MMP2, SNAI2, TWIST1, ZEB1, SCARF1, CD36, LDLR, VLDLR, VCAM1, ICAM1, SELE, SELP, CDH5, IL1R1, IL1R2, TNFRSF1A, TNFRSF1B, NOS3, PXDN. Primers were designed employing Primer-BLAST software using optimised settings. For the correlation analysis, Spearman's rank correlation coefficient was applied (GraphPad Prism).

Results. Coefficient of determination correlated with the primer pair rating by Beacon Designer, amplicon melting temperature, and GC content in the reverse primer. Reaction efficiency did not correlate with the Beacon Designer rating, yet being associated with length and GC content of the reverse primer. Abovementioned correlation coefficients ranged from 0.4 to 0.5 or from -0.4 to -0.5 indicative of moderate positive or negative correlation. Other parameters did not affect reaction efficiency and coefficient of determination. Conclusion Primer parameters do not define qPCR efficiency and coefficient of determination significantly if primers are designed according to the optimised PRIMER-BLAST settings. 

About the Authors

L. A. Bogdanov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

junior researcher at the Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology,

6, Sosonoviy Blvd., Kemerovo, 650002



D. K. Shishkova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

junior researcher at the Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology,

6, Sosonoviy Blvd., Kemerovo, 650002



M. Yu. Sinitsky
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

PhD, senior researcher at the Laboratory for Genomic Medicine, Division of Experimental and Clinical Cardiology,

6, Sosonoviy Blvd., Kemerovo, 650002



A. G. Kutikhin
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

MD, PhD, Head of the Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology,

6, Sosonoviy Blvd., Kemerovo, 650002



References

1. Chuang, L.-Y., Cheng, Y.-H., Yang, C.-H. Specific primer design for the polymerase chain reaction. Biotechnology Letters. 2013;35(10): 1541–1549. doi:10.1007/s10529-013-1249-8

2. SantaLucia J. Jr. Physical principles and visual-OMP software for optimal PCR design. Methods Mol Biol. 2007; 402:3-34. doi: 10.1007/978-1-59745-528-2_1

3. Valones M.A., Guimarães R.L., Brandão L.A., de Souza P.R., de Albuquerque Tavares Carvalho A., Crovela S. Principles and applications of polymerase chain reaction in medical diagnostic fields: A review. Braz J Microbiol. 2009; 40:1–11

4. Ando W., Kikuchi K., Uematsu T., Yokomori H., Takaki T., Sogabe M., Kohgo Y., Otori K., Ishikawa S., Okazaki I. Novel breast cancer screening: combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis. Sci Rep. 2019; 9(1):13595. doi: 10.1038/s41598-019-50084-5

5. Fretzayas A., Moustaki M., Liapi O., Karpathios T. Gilbert syndrome. Eur J Pediatr. 2012; 171(1):11-5. doi: 10.1007/s00431-011-1641-0

6. Liu Y., Guo Y., Jin X., Mei S., Xie T., Lan Q., Fang Y., Zhu B. Developmental validation study of a 24-plex Y-STR direct amplification system for forensic application. Int J Legal Med. 2019. doi: 10.1007/s00414-019-02220-z

7. Meienberg J., Bruggmann R., Oexle K., Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359-62. doi: 10.1007/s00439-015-1631-9.

8. Cankar K., Stebih D., Dreo T., Zel J., Gruden K. Critical points of DNA quantification by real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. 2006; 6:37. doi: 10.1186/1472-6750-6-37.

9. Bustin S., Huggett, J. qPCR primer design revisited. Biomolecular Detection and Quantification, Biomol Detect Quantif. 2017; 14: 19–28. doi:10.1016/j.bdq.2017.11.001

10. Li K., Brownley A. Primer design for RT-PCR. Methods Mol Biol. 2010; 630:271-99. doi: 10.1007/978-1-60761-629-0_18

11. Robertson J.M., Walsh-Weller J. An introduction to PCR primer design and optimization of amplification reactions. Methods Mol. Biol. 1998; 98:121–154. doi: 10,1385/0-89603-443-7: 121

12. Kutikhin A.G., Sinitsky M.Y., Ponasenko A.V. The role of mutagenesis in atherosclerosis. Complex Issues of Cardiovascular Diseases. 2017; 6 (1): 92-101. (In Russian) 13. Rodríguez A., Rodríguez M., Córdoba J.J., Andrade M.J. Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol. 2015; 1275:31-56. doi: 10.1007/978-1-4939-2365-6_3

13. Thornton B., Basu C. Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ. 2011;39(2):145-54. doi: 10.1002/bmb.20461

14. Picard-Meyer E., de Garam C., Peytavin, Schereffer J.L., Marchal C., Robardet E., Cliquet F. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1. BioMed Res. Int. 2015; 2015:839518. doi: 10.1155/2015/839518

15. Alemayehu S., Feghali K.C., Cowden J., Komisar J., Ockenhouse C.F., Kamau E. Comparative evaluation of published real-time PCR assays for the detection of malaria following MIQE guidelines. Malar. J. 2013; 12:277. doi: 10.1186/1475-2875-12-277

16. Buzard G.S., Baker D., Wolcott M.J., Norwood D.A., Dauphin L.A. Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness. Forensic Sci. Int. 2012; 223:292–297. doi: 10.1016/j.forsciint.2012.10.003

17. D’haene B, Hellemans J. The importance of quality control during qPCR data analysis. Int Drug Disc: 2010; 18–24.


Review

For citations:


Bogdanov L.A., Shishkova D.K., Sinitsky M.Yu., Kutikhin A.G. Primer parameters defining efficiency and coefficient of determination in quantitative polymerase chain reaction. Complex Issues of Cardiovascular Diseases. 2020;9(3):13-20. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-3-13-20

Views: 596


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)