Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Brain lymphatic drainage system – visualization opportunities and current state of the art

https://doi.org/10.17802/2306-1278-2020-9-3-81-89

Abstract

The lymphatic drainage system of the brain is assumed to consist of the lymphatic system and a network of meningeal lymphatic vessels. This system supports brain homeostasis, participates in immune surveillance and presents a new therapeutic target in the treatment of neurological disorders.

The article analyzes and systematizes data on the brain lymphatic drainage system. The key components of this system are considered: recently described meningeal lymphatic vessels and their relationship with the glymphatic system, which provides perfusion of the central nervous system with cerebrospinal and interstitial fluids. The lymphatic drainage system helps to maintain water and ion balances of the interstitial fluid and to remove metabolic waste products, assists in reabsorption of macromolecules. Disorders in its work play a crucial role in age-related changes in the brain, the pathogenesis of neurovascular and neurodegenerative diseases, as well as injuries and brain tumors. The review also presents the results of human studies concerning the presence, anatomy and structure of meningeal lymphatic vessels and the glymphatic system. The discovery of the brain lymphatic drainage system has not only changed our understanding of cerebrospinal fluid circulation, but also contributed to understanding the pathology and mechanisms of neurodegenerative diseases.

About the Authors

G. S. Yankova
Federal State Budgetary Institution of Science “Lavrentyev Institute of Hydrodynamics”, Siberian Branch of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Professional Education “Novosibirsk National Research State University”
Russian Federation

assistant researcher at the Laboratory of Differential Equations, 15, acad. Lavrenteva Ave., Novosibirsk, 630090;

assistant Professor at the Department of Mechanics and Mathematics, Pirogova St., Novosibirsk, 630090



O. B. Bogomyakova
Federal State Budgetary Institution of Science “International Tomographic Center”, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD., MD, researcher at Laboratory of MRI technologies,

3а, Institutskaya St., Novosibirsk, 630090



References

1. Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991-999. doi: 10.1084/jem.20142290

2. Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., Harris T.H., Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi: 10.1038/nature14432

3. Iliff J.J., Wang M., Liao Y., Plogg B., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., Nagelhus E.A., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111- 147ra111. doi: 10.1126/scitranslmed.3003748

4. Jessen N.A., Munk A.S.F., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583-2599. doi:10.1007/s11064-015-1581-6

5. Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M., Contarino C., OnengutGumuscu S., Farber E., Raper D., Viar K.E., Powell R.D., Baker W., Dabhi N., Bai R., Cao R., Hu S., Rich S.S., Munson J.M., Lopes M.B., Overall C.C., Acton S.T., Kipnis J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185-191. doi: /10.1038/ s41586-018-0368-8

6. Kress B.T., Iliff J.J., Xia M., Wang M, Wei H.S., Zeppenfeld D., Xie L., Kang H., Xu Q., Liew J.A., Plog B.A., Ding F., Deane R., Nedergaard M. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845-861. doi: 10.1002/ana.24271

7. Xie L., Kang H., Xu Q., Chen M.J., Liao Y., Thiyagarajan M., O’Donnell J., Christensen D.J., Nicholson C., Iliff J.J., Takano T., Deane R., Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373- 377. doi: 10.1126/science.1241224

8. Fultz N.E., Bonmassar G., Setsompop K., Stickgold R.A., Rosen B.R., Polimeni J.R., Lewis L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631. doi: 10.1126/science.aax5440

9. Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., Logan J., Nedergaard M., Benveniste H. The effect of body posture on brain glymphatic transport. J Neurosci. 2015;35(31):11034- 11044. doi: 10.1523/JNEUROSCI.1625-15.2015

10. Davson H., Segal M.B. Physiology of the CSF and blood-brain barriers.: CRC press.; 1996.

11. Ma Q., Ineichen B.V., Detmar M., Proulx S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1- 13. doi: 10.1038/s41467-017-01484-6

12. Jackson R.T., Tigges J., Arnold W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol. 1979;105(4):180-184. doi:10.1001/archotol.1979.00790160014003

13. Gomez D.G., Manzo R.P., Fenstermacher J.D., Potts D.G. Cerebrospinal fluid absorption in the rabbit. Graefes Arch Clin Exp Ophthalmol. 1988;226(1):1-7. doi: 10.1007/BF02172707

14. Orešković D., Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Brain Res Rev. 2010;64(2):241- 262. doi: 10.1016/j.brainresrev.2010.04.006

15. Hannocks M.J., Pizzo M.E., Huppert J., Deshpande T., Abbott N.J., Thorne R.G., Sorokin L. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab. 2018;38(4):669-686. doi: 10.1177/0271678X17749689

16. Rennels M.L., Gregory T.F., Blaumanis O.R., Fujimoto K., Grady P.A. Evidence for a ‘paravascular’fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47-63. doi: 10.1016/0006-8993(85)91383-6

17. Rennels M.L., Blaumanis O.R., Grady P.A. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990;52:431-439.

18. Brightman M.W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965;117(2):193-219.

19. Brightman M.W., Reese T.S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648-677.

20. Ichimura T., Fraser P.A., Cserr H.F. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991;545((1-2)):103-113. doi: 10.1016/0006-8993(91)91275-6

21. Carare R.O., Bernardes-Silva M., Newman T.A., Page A.M., Nicoll J.A.R., Perry V.H., Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131-144. doi: 10.1111/j.1365-2990.2007.00926.x

22. Morris A.W., Sharp M.M., Albargothy N.J., Fernandes R., Hawkes C.A., Verma A., Weller R.O., Carare R.O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131(5):725-736. doi: 10.1007/s00401-016-1555-z

23. Abbott N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437-449. doi: 10.1007/s10545-013-9608-0

24. Bakker E.N., Bacskai B.J., Arbel-Ornath M., Aldea R., Bedussi B., Morris A.W.J., Weller R.O., Carare R.O. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):181-194. doi: 10.1007/s10571-015-0273-8

25. Hladky S.B., Barrand M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):1-32. doi: 10.1186/2045-8118-11-26

26. Sharp M.K., Diem A.K., Weller R.O., Carare R.O. Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann Biomed Eng. 2016;44(5):1553-1565. doi: 10.1007/s10439-015-1457-6

27. Coloma M., Schaffer J.D., Carare R.O., Chiarot P.R., Huang P. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J Math Biol. 2016;73(2):469-490. doi: 10.1007/s00285-015-0960-6

28. Iliff J.J., Chen M.J., Plog B.A., Zeppenfeld D.M., Soltero M., Yang L., Singh I., Deane R., Nedergaard M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-16193. doi: 10.1523/JNEUROSCI.3020-14.2014

29. Mathiisen T.M., Lehre K.P., Danbolt N.C., Ottersen O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094-1103. doi: 10.1002/glia.20990

30. Korogod N., Petersen C.C., Knott G.W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife. 2015;4:e05793. doi: 10.7554/eLife.05793

31. Jin B.J., Smith A.J., Verkman A.S.. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol. 2016;148(6):489-501. doi: 10.1085/jgp.201611684

32. Iliff J.J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299- 1309. doi: 10.1172/JCI67677.

33. Taoka T., Jost G., Frenzel T., Naganawa S., Pietsch H. Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations. Invest Radiol. 2018;53(9):529-534. doi: 10.1097/RLI.0000000000000473

34. Akbar J.J., Luetmer P.H., Schwartz K.M., Hunt C.H., Diehn F.E., Eckel L.J. The role of MR myelography with intrathecal gadolinium in localization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33(3):535-540. doi: 10.3174/ajnr.A2815

35. Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691-2705. doi: 10.1093/brain/awx191

36. Ringstad G., Valnes L.M., Dale A.M., Pripp A.H., Vatnehol S.A.S., Emblem K.E., Mardal K.A., Eide P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI insight. 2018;3(13): e121537. doi: 10.1172/jci.insight.121537

37. Van De Haar H.J., Burgmans S., Jansen J.F., Van Osch M.J.P., Van Buchem M.A., Muller M., Hofman P.A.M., Verhey F.R.J., Backes W.H. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527-535. doi: 10.1148/radiol.2016152244

38. Jiang Q., Zhang L., Ding G., Davoodi-Bojd E., Li Q., Li L., Sadry N., Nedergaard M., Chopp M., Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab. 2017;37(4):1326-1337. doi: 10.1177/0271678X16654702

39. Mascagni P. Vasorum lymphaticorum corporis humani historia et ichnographia. Siena: Ex typographia Pazzini Carli; 1787. Available at: https://anatomia.library.utoronto.ca/islandora/object/anatomia%3ARBAI052 (accessed 09.07.2020)

40. Lüdemann W., von Rautenfeld D.B., Samii M., Brinker T. Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005;21(2):96-103. doi: 10.1007/s00381-004-1040-1

41. Furukawa M., Shimoda H., Kajiwara T., Kato S., Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res. 2008;29(6):289-296. doi: 10.2220/biomedres.29.289

42. Cserr H.F., Harling‐Berg C.J., Knopf P.M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992;2(4):269- 276. doi: 10.1111/j.1750-3639.1992.tb00703.x

43. Abbott N.J., Pizzo M.E., Preston J.E., Janigro D., Thorne R.G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’system? Acta Neuropathol. 2018;135(3):387-407. DOI: 10.1007/s00401-018-1812-4

44. Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology. 1948;29(1):58-69

45. Murphy J.B., Sturm E. Conditions determining the transplantability of tissues in the brain. The Journal of experimental medicine. 1923;38(2).

46. Galea I., Bechmann I., Perry V.H. What is immune privilege (not)? Trends Immunol. 2007;28(1):12-18. doi: 10.1016/j.it.2006.11.004

47. Louveau A., Harris T.H., Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569-577. doi: 10.1016/j.it.2015.08.006

48. Louveau A., Plog B.A., Antila S., Alitalo K., Nedergaard M., Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210-3219. doi: 10.1172/JCI90603.

49. Antila S., Karaman S., Nurmi H., Airavaara M., Voutilainen M.H., Mathivet T., Chilov D., Li Z., Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A,Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214(12):3645-3667. doi: 10.1084/jem.20170391

50. Maloveska M., Danko J., Petrovova E., Kresakova L., Vdoviakova K., Michalicova A., Kovac A., Cubinkova V., Cizkova D. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes. Neurol Res. 2018;40(5):372-380. doi: 10.1080/01616412.2018.1446282

51. Louveau A., Herz J., Alme M.N., Salvador A.F., Dong M.Q., Viar K.E., Herod S.G., Knopp J., Setliff J.C., Lupi A.L., Da Mesquita S., Frost E.L., Gaultier A., Harris T.H., Cao R., Hu S., Lukens J.R., Smirnov I., Overall K.C., Oliver G., Kipnis J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018;21(10):1380-1391. doi: 10.1038/s41593-018-0227-9

52. Absinta M., Ha S.K., Nair G., Sati P., Luciano N.J., Palisoc M., Louveau A., Zaghloul K.A., Pittaluga S., Kipnis J., Reich D.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:e29738. doi: 10.7554/eLife.29738

53. Kuo P.H., Stuehm C., Squire S., Johnson K. Meningeal lymphatic vessel flow runs countercurrent to venous flow in the superior sagittal sinus of the human brain. Tomography. 2018;4(3):99-103. doi: 10.18383/j.tom.2018.00013

54. Goodman J.R., Adham Z.O., Woltjer R.L., Lund A.W., Iliff J.J. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects. Brain Behav Immun. 2018;73:34-40. doi: 10.1016/j.bbi.2018.07.020

55. Raper D., Louveau A., Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581-586. doi: 10.1016/j.tins.2016.07.001


Review

For citations:


Yankova G.S., Bogomyakova O.B. Brain lymphatic drainage system – visualization opportunities and current state of the art. Complex Issues of Cardiovascular Diseases. 2020;9(3):81-89. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-3-81-89

Views: 1167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)